Given an array arr[] of size N. The task is to find the sum of the contiguous subarray within a arr[] with the largest sum.
The idea of Kadane’s algorithm is to maintain a variable max_ending_here that stores the maximum sum contiguous subarray ending at current index and a variable max_so_far stores the maximum sum of contiguous subarray found so far, Everytime there is a positive-sum value in max_ending_here compare it with max_so_far and update max_so_far if it is greater than max_so_far.
So the main Intuition behind Kadane’s algorithm is,
– the subarray with negative sum is discarded (by assigning max_ending_here = 0 in code).
– we carry subarray till it gives positive sum.
Initialize:
max_so_far = INT_MIN
max_ending_here = 0Loop for each element of the array
(a) max_ending_here = max_ending_here + a[i]
(b) if(max_so_far < max_ending_here)
max_so_far = max_ending_here
(c) if(max_ending_here < 0)
max_ending_here = 0
return max_so_far
Illustration:
Lets take the example: {-2, -3, 4, -1, -2, 1, 5, -3}
max_so_far = INT_MIN
max_ending_here = 0for i=0, a[0] = -2
max_ending_here = max_ending_here + (-2)
Set max_ending_here = 0 because max_ending_here < 0
and set max_so_far = -2for i=1, a[1] = -3
max_ending_here = max_ending_here + (-3)
Since max_ending_here = -3 and max_so_far = -2, max_so_far will remain -2
Set max_ending_here = 0 because max_ending_here < 0for i=2, a[2] = 4
max_ending_here = max_ending_here + (4)
max_ending_here = 4
max_so_far is updated to 4 because max_ending_here greater
than max_so_far which was -2 till nowfor i=3, a[3] = -1
max_ending_here = max_ending_here + (-1)
max_ending_here = 3for i=4, a[4] = -2
max_ending_here = max_ending_here + (-2)
max_ending_here = 1for i=5, a[5] = 1
max_ending_here = max_ending_here + (1)
max_ending_here = 2for i=6, a[6] = 5
max_ending_here = max_ending_here + (5)
max_ending_here = 7
max_so_far is updated to 7 because max_ending_here is
greater than max_so_farfor i=7, a[7] = -3
max_ending_here = max_ending_here + (-3)
max_ending_here = 4
Follow the below steps to Implement the idea:
- Initialize the variables max_so_far = INT_MIN and max_ending_here = 0
- Run a for loop from 0 to N-1 and for each index i:
- Add the arr[i] to max_ending_here.
- If max_so_far is less than max_ending_here then update max_so_far to max_ending_here.
- If max_ending_here < 0 then update max_ending_here = 0
- Return max_so_far
Below is the Implementation of the above approach.
C++
// C++ program to print largest contiguous array sum #include <bits/stdc++.h> using namespace std; int maxSubArraySum( int a[], int size) { int max_so_far = INT_MIN, max_ending_here = 0; for ( int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } // Driver Code int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof (a) / sizeof (a[0]); // Function Call int max_sum = maxSubArraySum(a, n); cout << "Maximum contiguous sum is " << max_sum; return 0; } |
Java
// Java program to print largest contiguous array sum import java.io.*; import java.util.*; class Kadane { // Driver Code public static void main(String[] args) { int [] a = { - 2 , - 3 , 4 , - 1 , - 2 , 1 , 5 , - 3 }; System.out.println( "Maximum contiguous sum is " + maxSubArraySum(a)); } // Function Call static int maxSubArraySum( int a[]) { int size = a.length; int max_so_far = Integer.MIN_VALUE, max_ending_here = 0 ; for ( int i = 0 ; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0 ) max_ending_here = 0 ; } return max_so_far; } } |
Python
# Python program to find maximum contiguous subarray # Function to find the maximum contiguous subarray from sys import maxint def maxSubArraySum(a, size): max_so_far = - maxint - 1 max_ending_here = 0 for i in range ( 0 , size): max_ending_here = max_ending_here + a[i] if (max_so_far < max_ending_here): max_so_far = max_ending_here if max_ending_here < 0 : max_ending_here = 0 return max_so_far # Driver function to check the above function a = [ - 2 , - 3 , 4 , - 1 , - 2 , 1 , 5 , - 3 ] print "Maximum contiguous sum is" , maxSubArraySum(a, len (a)) # This code is contributed by _Devesh Agrawal_ |
C#
// C# program to print largest // contiguous array sum using System; class GFG { static int maxSubArraySum( int [] a) { int size = a.Length; int max_so_far = int .MinValue, max_ending_here = 0; for ( int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } // Driver code public static void Main() { int [] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; Console.Write( "Maximum contiguous sum is " + maxSubArraySum(a)); } } // This code is contributed by Sam007_ |
Javascript
<script> // JavaScript program to find maximum // contiguous subarray // Function to find the maximum // contiguous subarray function maxSubArraySum(a, size) { var maxint = Math.pow(2, 53) var max_so_far = -maxint - 1 var max_ending_here = 0 for ( var i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i] if (max_so_far < max_ending_here) max_so_far = max_ending_here if (max_ending_here < 0) max_ending_here = 0 } return max_so_far } // Driver code var a = [ -2, -3, 4, -1, -2, 1, 5, -3 ] document.write( "Maximum contiguous sum is" , maxSubArraySum(a, a.length)) // This code is contributed by AnkThon </script> |
PHP
<?php // PHP program to print largest // contiguous array sum function maxSubArraySum( $a , $size ) { $max_so_far = PHP_INT_MIN; $max_ending_here = 0; for ( $i = 0; $i < $size ; $i ++) { $max_ending_here = $max_ending_here + $a [ $i ]; if ( $max_so_far < $max_ending_here ) $max_so_far = $max_ending_here ; if ( $max_ending_here < 0) $max_ending_here = 0; } return $max_so_far ; } // Driver code $a = array (-2, -3, 4, -1, -2, 1, 5, -3); $n = count ( $a ); $max_sum = maxSubArraySum( $a , $n ); echo "Maximum contiguous sum is " , $max_sum ; // This code is contributed by anuj_67. ?> |
Maximum contiguous sum is 7
Time Complexity: O(N)
Auxiliary Space: O(1)
Print the Largest Sum Contiguous Subarray
To print the subarray with the maximum sum the idea is to maintain start index of maximum_sum_ending_here at current index so that whenever maximum_sum_so_far is updated with maximum_sum_ending_here then start index and end index of subarray can be updated with start and current index.
Follow the below steps to implement the idea:
- Initialize the variables s, start, and end with 0 and max_so_far = INT_MIN and max_ending_here = 0
- Run a for loop from 0 to N-1 and for each index i:
- Add the arr[i] to max_ending_here.
- If max_so_far is less than max_ending_here then update max_so_far to max_ending_here and update start to s and end to i .
- If max_ending_here < 0 then update max_ending_here = 0 and s with i+1.
- Print values from index start to end.
Below is the Implementation of above approach:
C++
// C++ program to print largest contiguous array sum #include <climits> #include <iostream> using namespace std; void maxSubArraySum( int a[], int size) { int max_so_far = INT_MIN, max_ending_here = 0, start = 0, end = 0, s = 0; for ( int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } cout << "Maximum contiguous sum is " << max_so_far << endl; cout << "Starting index " << start << endl << "Ending index " << end << endl; } /*Driver program to test maxSubArraySum*/ int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof (a) / sizeof (a[0]); maxSubArraySum(a, n); return 0; } |
Java
// Java program to print largest // contiguous array sum import java.io.*; import java.util.*; class GFG { static void maxSubArraySum( int a[], int size) { int max_so_far = Integer.MIN_VALUE, max_ending_here = 0 , start = 0 , end = 0 , s = 0 ; for ( int i = 0 ; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0 ) { max_ending_here = 0 ; s = i + 1 ; } } System.out.println( "Maximum contiguous sum is " + max_so_far); System.out.println( "Starting index " + start); System.out.println( "Ending index " + end); } // Driver code public static void main(String[] args) { int a[] = { - 2 , - 3 , 4 , - 1 , - 2 , 1 , 5 , - 3 }; int n = a.length; maxSubArraySum(a, n); } } // This code is contributed by prerna saini |
Python3
# Python program to print largest contiguous array sum from sys import maxsize # Function to find the maximum contiguous subarray # and print its starting and end index def maxSubArraySum(a, size): max_so_far = - maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range ( 0 , size): max_ending_here + = a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0 : max_ending_here = 0 s = i + 1 print ( "Maximum contiguous sum is %d" % (max_so_far)) print ( "Starting Index %d" % (start)) print ( "Ending Index %d" % (end)) # Driver program to test maxSubArraySum a = [ - 2 , - 3 , 4 , - 1 , - 2 , 1 , 5 , - 3 ] maxSubArraySum(a, len (a)) |
C#
// C# program to print largest // contiguous array sum using System; class GFG { static void maxSubArraySum( int [] a, int size) { int max_so_far = int .MinValue, max_ending_here = 0, start = 0, end = 0, s = 0; for ( int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } Console.WriteLine( "Maximum contiguous " + "sum is " + max_so_far); Console.WriteLine( "Starting index " + start); Console.WriteLine( "Ending index " + end); } // Driver code public static void Main() { int [] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = a.Length; maxSubArraySum(a, n); } } // This code is contributed // by anuj_67. |
Javascript
<script> // javascript program to print largest // contiguous array sum function maxSubArraySum(a , size) { var max_so_far = Number.MIN_SAFE_INTEGER, max_ending_here = 0, start = 0, end = 0, s = 0; for (i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } document.write( "Maximum contiguous sum is " + max_so_far); document.write( "<br/>Starting index " + start); document.write( "<br/>Ending index " + end); } // Driver code var a = [ -2, -3, 4, -1, -2, 1, 5, -3 ]; var n = a.length; maxSubArraySum(a, n); // This code is contributed by Rajput-Ji </script> |
PHP
<?php // PHP program to print largest // contiguous array sum function maxSubArraySum( $a , $size ) { $max_so_far = PHP_INT_MIN; $max_ending_here = 0; $start = 0; $end = 0; $s = 0; for ( $i = 0; $i < $size ; $i ++) { $max_ending_here += $a [ $i ]; if ( $max_so_far < $max_ending_here ) { $max_so_far = $max_ending_here ; $start = $s ; $end = $i ; } if ( $max_ending_here < 0) { $max_ending_here = 0; $s = $i + 1; } } echo "Maximum contiguous sum is " . $max_so_far . "\n" ; echo "Starting index " . $start . "\n" . "Ending index " . $end . "\n" ; } // Driver Code $a = array (-2, -3, 4, -1, -2, 1, 5, -3); $n = sizeof( $a ); maxSubArraySum( $a , $n ); // This code is contributed // by ChitraNayal ?> |
Maximum contiguous sum is 7 Starting index 2 Ending index 6
Time Complexity: O(n)
Auxiliary Space: O(1)
Practice Problem:
Given an array of integers (possibly some elements negative), write a C program to find out the *maximum product* possible by multiplying ‘n’ consecutive integers in the array where n ≤ ARRAY_SIZE. Also, print the starting point of the maximum product subarray.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!