Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIKth prime number greater than N

Kth prime number greater than N

Given a number N, the task is to print the Kth prime number greater than N. 
Note: N and K are so given that answers are always less than 10^6. 
Examples: 

Input: N = 5, K = 5
Output: 19
Input: N = 10, K = 3
Output: 17

A simple solution for this problem is to iterate from n+1 to 10^6 and for every number, check if it is prime and print the Kth prime number. This solution looks fine if there is only one query. But not efficient if there are multiple queries.
An efficient solution for this problem is to generate all primes less than 10^6 using Sieve of Eratosthenes and iterate from n+1 to 10^6 and then print the Kth prime number. 
 

C++




// CPP program to print the Kth prime greater than N
#include <bits/stdc++.h>
using namespace std;
 
// set the MAX_SIZE of the array to 10^6
const int MAX_SIZE = 1e6;
 
// initialize the prime array
bool prime[MAX_SIZE + 1];
 
void sieve()
{
 
    // set all numbers as prime for time being
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p <= MAX_SIZE; p++) {
 
        // if prime[p] is not changed, then it is a prime
        if (prime[p] == true) {
 
            // update all multiples of p
            for (int i = p * p; i <= MAX_SIZE; i += p)
                prime[i] = false;
        }
    }
}
// Function to find the kth prime greater than n
int kthPrimeGreaterThanN(int n, int k)
{
 
    int res = -1;
    // looping through the numbers greater than n
    for (int i = n + 1; i < MAX_SIZE; i++) {
 
        // decrement k if i is prime
        if (prime[i] == true)
            k--;
 
        // store the kth prime greater than n
        if (k == 0) {
            res = i;
            break;
        }
    }
 
    return res;
}
 
// Driver code
int main()
{
 
    sieve();
    int n = 2, k = 15;
 
    // Print the kth prime number greater than n
    cout << kthPrimeGreaterThanN(n, k);
    return 0;
}


Java




// Java program to print the
// Kth prime greater than N
import java.util.*;
 
class GFG
{
 
// set the MAX_SIZE of the array to 10^6
static int MAX_SIZE = (int) 1e6;
 
// initialize the prime array
static boolean []prime = new boolean[MAX_SIZE + 1];
 
static void sieve()
{
 
    // set all numbers as prime for time being
    Arrays.fill(prime, true);
 
    for (int p = 2; p * p <= MAX_SIZE; p++)
    {
 
        // if prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // update all multiples of p
            for (int i = p * p;
                     i <= MAX_SIZE; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find the kth prime greater than n
static int kthPrimeGreaterThanN(int n, int k)
{
 
    int res = -1;
     
    // looping through the numbers greater than n
    for (int i = n + 1; i < MAX_SIZE; i++)
    {
 
        // decrement k if i is prime
        if (prime[i] == true)
            k--;
 
        // store the kth prime greater than n
        if (k == 0)
        {
            res = i;
            break;
        }
    }
    return res;
}
 
// Driver code
public static void main(String[] args)
{
    sieve();
    int n = 2, k = 15;
 
    // Print the kth prime number greater than n
    System.out.println(kthPrimeGreaterThanN(n, k));
}
}
 
// This code is contributed by 29AjayKumar


Python 3




# Python 3 program to print the Kth
# prime greater than N
 
# set the MAX_SIZE of the array to 10^6
MAX_SIZE = int(1e6)
 
# initialize the prime array
prime = [True] * (MAX_SIZE + 1)
 
# Code for Sieve of Eratosthenes
def sieve():
    p = 2
     
    while (p * p <= MAX_SIZE):
         
        # if prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
             
            # update all multiples of p
            for i in range(p * p, MAX_SIZE, p):
                prime[i] = False
        p += 1
 
# Function to find the kth prime
# greater than n
def kthPrimeGreaterThanN(n, k):
    res = -1
     
    # looping through the numbers
    # greater than n
    for i in range(n + 1, MAX_SIZE):
         
        # decrement k if i is prime
        if (prime[i] == True):
            k -= 1
         
        # store the kth prime greater than n
        if (k == 0):
            res = i
            break
     
    return res
 
# Driver Code
if __name__=='__main__':
    n = 2
    k = 15
    sieve()
     
    # Print the kth prime number
    # greater than n
    print(kthPrimeGreaterThanN(n, k))
     
# This code is contributed by Rupesh Rao


C#




// C# program to print the
// Kth prime greater than N
using System;
using System.Collections.Generic;
     
class GFG
{
 
// set the MAX_SIZE of the array to 10^6
static int MAX_SIZE = (int) 1e6;
 
// initialize the prime array
static Boolean []prime = new Boolean[MAX_SIZE + 1];
 
static void sieve()
{
 
    // set all numbers as prime for time being
    for (int i = 0; i < MAX_SIZE + 1; i++)
        prime[i] = true;
 
    for (int p = 2; p * p <= MAX_SIZE; p++)
    {
 
        // if prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // update all multiples of p
            for (int i = p * p;
                     i <= MAX_SIZE; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find the kth prime greater than n
static int kthPrimeGreaterThanN(int n, int k)
{
 
    int res = -1;
     
    // looping through the numbers greater than n
    for (int i = n + 1; i < MAX_SIZE; i++)
    {
 
        // decrement k if i is prime
        if (prime[i] == true)
            k--;
 
        // store the kth prime greater than n
        if (k == 0)
        {
            res = i;
            break;
        }
    }
    return res;
}
 
// Driver code
public static void Main(String[] args)
{
    sieve();
    int n = 2, k = 15;
 
    // Print the kth prime number greater than n
    Console.WriteLine(kthPrimeGreaterThanN(n, k));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program to print
// the Kth prime greater than N
 
// set the MAX_SIZE of the array to 10^6
var MAX_SIZE = 1000006;
 
// initialize the prime array
var prime = Array(MAX_SIZE + 1).fill(true);
 
function sieve()
{
 
 
    for (var p = 2; p * p <= MAX_SIZE; p++)
    {
 
        // if prime[p] is not changed,
        then it is a prime
        if (prime[p] == true) {
 
            // update all multiples of p
            for (var i = p * p; i <= MAX_SIZE; i += p)
                prime[i] = false;
        }
    }
}
// Function to find the kth prime greater than n
function kthPrimeGreaterThanN(n, k)
{
 
    var res = -1;
    // looping through the numbers greater than n
    for (var i = n + 1; i < MAX_SIZE; i++)
    {
 
        // decrement k if i is prime
        if (prime[i] == true)
            k--;
 
        // store the kth prime greater than n
        if (k == 0) {
            res = i;
            break;
        }
    }
 
    return res;
}
 
// Driver code
sieve();
var n = 2, k = 15;
// Print the kth prime number greater than n
document.write( kthPrimeGreaterThanN(n, k));
 
</script>


Output

53





 Naive Approach:

Approach:

In this approach, we will check each number greater than N whether it is a prime number or not. We will keep a counter variable to count the number of prime numbers found. Once the counter reaches K, we will return the last prime number found

Step 1: Define a function is_prime that takes a number as input and returns True if it is a prime number, False otherwise.

Step 2: Define a function kth_prime_naive that takes two inputs, N and K, and returns the Kth prime number greater than N using a naive approach.

Step 3: Initialize a count variable to 0.

Step 4: Loop through all numbers from N+1 to N+K^2.

Step 5: Check whether each number is a prime number using the is_prime function. If it is, increment the count variable.

Step 6: If the count variable is equal to K, return the current number.

Step 7: If the loop completes without finding K prime numbers, return None.

C++




#include <iostream>
#include <cmath> 
 
using namespace std;
 
// Function to check if a number is prime
bool isPrime(int num) {
    if (num < 2) {
        return false; // Numbers less than 2 are not prime
    }
    for (int i = 2; i <= sqrt(num); i++) {
        if (num % i == 0) {
            return false; // If divisible by any number between 2 and sqrt(num), it's not prime
        }
    }
    return true; // If not divisible by any numbers, it's prime
}
 
// Function to find the Kth prime number starting from N+1
int kthPrimeNaive(int N, int K) {
    int count = 0; // Counter to keep track of the found prime numbers
    for (int i = N + 1; ; i++) {
        if (isPrime(i)) {
            count++;
            if (count == K) {
                return i; // Return the Kth prime number
            }
        }
    }
}
//Driver Code
int main() {
     
    cout << kthPrimeNaive(5, 5) << endl; // Output: 19 (5th prime number starting from 6)
    cout << kthPrimeNaive(10, 3) << endl; // Output: 17 (3rd prime number starting from 11)
 
    return 0;
}


Python3




def is_prime(num):
    if num < 2:
        return False
    for i in range(2, int(num**0.5) + 1):
        if num % i == 0:
            return False
    return True
 
def kth_prime_naive(N, K):
    count = 0
    for i in range(N + 1, N + K**2):
        if is_prime(i):
            count += 1
            if count == K:
                return i
    return None
 
# Example usage:
print(kth_prime_naive(5, 5)) # Output: 19
print(kth_prime_naive(10, 3)) # Output: 17


C#




using System;
 
class Program
{
    // Function to check if a number is prime
    static bool IsPrime(int num)
    {
        if (num < 2)
        {
            return false; // Numbers less than 2 are not prime
        }
        for (int i = 2; i <= Math.Sqrt(num); i++)
        {
            if (num % i == 0)
            {
                return false; // If divisible by any number between 2 and sqrt(num), it's not prime
            }
        }
        return true; // If not divisible by any numbers, it's prime
    }
 
    // Function to find the Kth prime number starting from N+1
    static int KthPrimeNaive(int N, int K)
    {
        int count = 0; // Counter to keep track of the found prime numbers
        for (int i = N + 1; ; i++)
        {
            if (IsPrime(i))
            {
                count++;
                if (count == K)
                {
                    return i; // Return the Kth prime number
                }
            }
        }
    }
 
    // Driver Code
    static void Main()
    {
        Console.WriteLine(KthPrimeNaive(5, 5)); // Output: 19 (5th prime number starting from 6)
        Console.WriteLine(KthPrimeNaive(10, 3)); // Output: 17 (3rd prime number starting from 11)
    }
}


Javascript




function isPrime(num) {
    if (num < 2) {
        return false;
    }
    for (let i = 2; i <= Math.sqrt(num); i++) {
        if (num % i === 0) {
            return false;
        }
    }
    return true;
}
function kthPrimeNaive(N, K) {
    let count = 0;
    for (let i = N + 1; count < K * K; i++) {
        if (isPrime(i)) {
            count++;
            if (count === K) {
                return i;
            }
        }
    }
    return null;
}
// Example usage:
console.log(kthPrimeNaive(5, 5)); // Output: 19
console.log(kthPrimeNaive(10, 3)); // Output: 17


Output

19
17





Time Complexity: O(N*K)
Space Complexity: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments