Given a vertex V of an N-ary tree and an integer K, the task is to print the Kth ancestor of the given vertex in the tree. If there does not exist any such ancestor then print -1.
Examples:
Input: K = 2, V = 4
Output: 1
2nd parent of vertex 4 is 1.
Input: K = 3, V = 4
Output: -1
Approach: The idea is to use Binary Lifting Technique. This technique is based on the fact that every integer can be represented in binary form. Through pre-processing, a sparse table table[v][i] can be calculated which stores the 2ith parent of the vertex v where 0 ? i ? log2N. This pre-processing takes O(NlogN) time.
To find the Kth parent of the vertex V, let K = b0b1b2…bn be an n bit number in the binary representation, let p1, p2, p3, …, pj be the indices where bit value is 1 then K can be represented as K = 2p1 + 2p2 + 2p3 + … + 2pj. Thus to reach Kth parent of V, we have to make jumps to 2pth1, 2pth2, 2pth3 upto 2pthj parent in any order. This can be done efficiently through the sparse table calculated earlier in O(logN).
Below is the implementation of the above approach:
C++
// CPP implementation of the approach #include <bits/stdc++.h> using namespace std; // Table for storing 2^ith parent int **table; // To store the height of the tree int height; // initializing the table and // the height of the tree void initialize( int n) { height = ( int ) ceil (log2(n)); table = new int *[n + 1]; } // Filling with -1 as initial void preprocessing( int n) { for ( int i = 0; i < n + 1; i++) { table[i] = new int [height + 1]; memset (table[i], -1, sizeof table[i]); } } // Calculating sparse table[][] dynamically void calculateSparse( int u, int v) { // Using the recurrence relation to // calculate the values of table[][] table[v][0] = u; for ( int i = 1; i <= height; i++) { table[v][i] = table[table[v][i - 1]][i - 1]; // If we go out of bounds of the tree if (table[v][i] == -1) break ; } } // Function to return the Kth ancestor of V int kthancestor( int V, int k) { // Doing bitwise operation to // check the set bit for ( int i = 0; i <= height; i++) { if (k & (1 << i)) { V = table[V][i]; if (V == -1) break ; } } return V; } // Driver Code int main() { // Number of vertices int n = 6; // initializing initialize(n); // Pre-processing preprocessing(n); // Calculating ancestors of v calculateSparse(1, 2); calculateSparse(1, 3); calculateSparse(2, 4); calculateSparse(2, 5); calculateSparse(3, 6); int K = 2, V = 5; cout << kthancestor(V, K) << endl; return 0; } // This code is contributed by // sanjeev2552 |
Java
// Java implementation of the approach import java.util.Arrays; class GfG { // Table for storing 2^ith parent private static int table[][]; // To store the height of the tree private static int height; // Private constructor for initializing // the table and the height of the tree private GfG( int n) { // log(n) with base 2 height = ( int )Math.ceil(Math.log10(n) / Math.log10( 2 )); table = new int [n + 1 ][height + 1 ]; } // Filling with -1 as initial private static void preprocessing() { for ( int i = 0 ; i < table.length; i++) { Arrays.fill(table[i], - 1 ); } } // Calculating sparse table[][] dynamically private static void calculateSparse( int u, int v) { // Using the recurrence relation to // calculate the values of table[][] table[v][ 0 ] = u; for ( int i = 1 ; i <= height; i++) { table[v][i] = table[table[v][i - 1 ]][i - 1 ]; // If we go out of bounds of the tree if (table[v][i] == - 1 ) break ; } } // Function to return the Kth ancestor of V private static int kthancestor( int V, int k) { // Doing bitwise operation to // check the set bit for ( int i = 0 ; i <= height; i++) { if ((k & ( 1 << i)) != 0 ) { V = table[V][i]; if (V == - 1 ) break ; } } return V; } // Driver code public static void main(String args[]) { // Number of vertices int n = 6 ; // Calling the constructor GfG obj = new GfG(n); // Pre-processing preprocessing(); // Calculating ancestors of v calculateSparse( 1 , 2 ); calculateSparse( 1 , 3 ); calculateSparse( 2 , 4 ); calculateSparse( 2 , 5 ); calculateSparse( 3 , 6 ); int K = 2 , V = 5 ; System.out.print(kthancestor(V, K)); } } |
Python3
# Python3 implementation of the approach import math class GfG : # Private constructor for initializing # the table and the height of the tree def __init__( self , n): # log(n) with base 2 # To store the height of the tree self .height = int (math.ceil(math.log10(n) / math.log10( 2 ))) # Table for storing 2^ith parent self .table = [ 0 ] * (n + 1 ) # Filling with -1 as initial def preprocessing( self ): i = 0 while ( i < len ( self .table)) : self .table[i] = [ - 1 ] * ( self .height + 1 ) i = i + 1 # Calculating sparse table[][] dynamically def calculateSparse( self , u, v): # Using the recurrence relation to # calculate the values of table[][] self .table[v][ 0 ] = u i = 1 while ( i < = self .height) : self .table[v][i] = self .table[ self .table[v][i - 1 ]][i - 1 ] # If we go out of bounds of the tree if ( self .table[v][i] = = - 1 ): break i = i + 1 # Function to return the Kth ancestor of V def kthancestor( self , V, k): i = 0 # Doing bitwise operation to # check the set bit while ( i < = self .height) : if ((k & ( 1 << i)) ! = 0 ) : V = self .table[V][i] if (V = = - 1 ): break i = i + 1 return V # Driver code # Number of vertices n = 6 # Calling the constructor obj = GfG(n) # Pre-processing obj.preprocessing() # Calculating ancestors of v obj.calculateSparse( 1 , 2 ) obj.calculateSparse( 1 , 3 ) obj.calculateSparse( 2 , 4 ) obj.calculateSparse( 2 , 5 ) obj.calculateSparse( 3 , 6 ) K = 2 V = 5 print (obj.kthancestor(V, K)) # This code is contributed by Arnab Kundu |
C#
// C# implementation of the approach using System; class GFG { class GfG { // Table for storing 2^ith parent private static int [,]table ; // To store the height of the tree private static int height; // Private constructor for initializing // the table and the height of the tree private GfG( int n) { // log(n) with base 2 height = ( int )Math.Ceiling(Math.Log10(n) / Math.Log10(2)); table = new int [n + 1, height + 1]; } // Filling with -1 as initial private static void preprocessing() { for ( int i = 0; i < table.GetLength(0); i++) { for ( int j = 0; j < table.GetLength(1); j++) { table[i, j] = -1; } } } // Calculating sparse table[,] dynamically private static void calculateSparse( int u, int v) { // Using the recurrence relation to // calculate the values of table[,] table[v, 0] = u; for ( int i = 1; i <= height; i++) { table[v, i] = table[table[v, i - 1], i - 1]; // If we go out of bounds of the tree if (table[v, i] == -1) break ; } } // Function to return the Kth ancestor of V private static int kthancestor( int V, int k) { // Doing bitwise operation to // check the set bit for ( int i = 0; i <= height; i++) { if ((k & (1 << i)) != 0) { V = table[V, i]; if (V == -1) break ; } } return V; } // Driver code public static void Main() { // Number of vertices int n = 6; // Calling the constructor GfG obj = new GfG(n); // Pre-processing preprocessing(); // Calculating ancestors of v calculateSparse(1, 2); calculateSparse(1, 3); calculateSparse(2, 4); calculateSparse(2, 5); calculateSparse(3, 6); int K = 2, V = 5; Console.Write(kthancestor(V, K)); } } } // This code is contributed by AnkitRai01 |
Javascript
<script> // Javascript implementation of the approach // Table for storing 2^ith parent let table; // To store the height of the tree let height; // initializing the table and // the height of the tree function initialize(n) { height = Math.ceil(Math.log2(n)); } // Filling with -1 as initial function preprocessing() { table = new Array(n + 1); for (let i = 0; i < n + 1; i++) { table[i] = new Array(height + 1); for (let j = 0; j < height + 1; j++) { table[i][j] = -1; } } } // Calculating sparse table[][] dynamically function calculateSparse(u, v) { // Using the recurrence relation to // calculate the values of table[][] table[v][0] = u; for (let i = 1; i <= height; i++) { table[v][i] = table[table[v][i - 1]][i - 1]; // If we go out of bounds of the tree if (table[v][i] == -1) break ; } } // Function to return the Kth ancestor of V function kthancestor(V, k) { // Doing bitwise operation to // check the set bit for (let i = 0; i <= height; i++) { if ((k & (1 << i)) != 0) { V = table[V][i]; if (V == -1) break ; } } return V; } // Number of vertices let n = 6; // Calling the constructor initialize(n); // Pre-processing preprocessing(); // Calculating ancestors of v calculateSparse(1, 2); calculateSparse(1, 3); calculateSparse(2, 4); calculateSparse(2, 5); calculateSparse(3, 6); let K = 2, V = 5; document.write(kthancestor(V, K)); // This code is contributed by divyeshrabadiya07. </script> |
1
Time Complexity: O(NlogN) for pre-processing and logN for finding the ancestor.
Auxiliary Space: O(NlogN), since we need to store the sparse table with n rows and logn columns, and each cell stores an integer value.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!