Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIIterative Quick Sort

Iterative Quick Sort

Following is a typical recursive implementation of Quick Sort that uses last element as pivot. 
 

C++




// CPP code for recursive function of Quicksort
#include <bits/stdc++.h>
  
using namespace std;
  
// Function to swap numbers
void swap(int* a, int* b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
  
/* This function takes last element as pivot,
   places the pivot element at its correct
   position in sorted  array, and places
   all smaller (smaller than pivot) to left
   of pivot and all greater elements to 
   right of pivot */
int partition(int arr[], int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
  
    for (int j = l; j <= h - 1; j++) {
        if (arr[j] <= x) {
            i++;
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[h]);
    return (i + 1);
}
  
/* A[] --> Array to be sorted, 
l --> Starting index, 
h --> Ending index */
void quickSort(int A[], int l, int h)
{
    if (l < h) {
        /* Partitioning index */
        int p = partition(A, l, h);
        quickSort(A, l, p - 1);
        quickSort(A, p + 1, h);
    }
}
  
// Driver code
int main()
{
  
    int n = 5;
    int arr[n] = { 4, 2, 6, 9, 2 };
  
    quickSort(arr, 0, n - 1);
  
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
  
    return 0;
}


Java




// Java program for implementation of QuickSort
import java.util.*;
  
class QuickSort {
    /* This function takes last element as pivot,
    places the pivot element at its correct
    position in sorted array, and places all
    smaller (smaller than pivot) to left of
    pivot and all greater elements to right
    of pivot */
    static int partition(int arr[], int low, int high)
    {
        int pivot = arr[high];
        int i = (low - 1); // index of smaller element
        for (int j = low; j <= high - 1; j++) {
            // If current element is smaller than or
            // equal to pivot
            if (arr[j] <= pivot) {
                i++;
  
                // swap arr[i] and arr[j]
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
  
        // swap arr[i+1] and arr[high] (or pivot)
        int temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
  
        return i + 1;
    }
  
    /* The main function that implements QuickSort()
    arr[] --> Array to be sorted,
    low --> Starting index,
    high --> Ending index */
    static void qSort(int arr[], int low, int high)
    {
        if (low < high) {
            /* pi is partitioning index, arr[pi] is
            now at right place */
            int pi = partition(arr, low, high);
  
            // Recursively sort elements before
            // partition and after partition
            qSort(arr, low, pi - 1);
            qSort(arr, pi + 1, high);
        }
    }
  
    // Driver code
    public static void main(String args[])
    {
  
        int n = 5;
        int arr[] = { 4, 2, 6, 9, 2 };
  
        qSort(arr, 0, n - 1);
  
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i] + " ");
        }
    }
}


Python3




# A typical recursive Python
# implementation of QuickSort
  
# Function takes last element as pivot,
# places the pivot element at its correct
# position in sorted array, and places all
# smaller (smaller than pivot) to left of
# pivot and all greater elements to right
# of pivot
def partition(arr, low, high):
    i = (low - 1)         # index of smaller element
    pivot = arr[high]     # pivot
  
    for j in range(low, high):
  
        # If current element is smaller 
        # than or equal to pivot
        if arr[j] <= pivot:
          
            # increment index of
            # smaller element
            i += 1
            arr[i], arr[j] = arr[j], arr[i]
  
    arr[i + 1], arr[high] = arr[high], arr[i + 1]
    return (i + 1)
  
# The main function that implements QuickSort
# arr[] --> Array to be sorted,
# low --> Starting index,
# high --> Ending index
  
# Function to do Quick sort
def quickSort(arr, low, high):
    if low < high:
  
        # pi is partitioning index, arr[p] is now
        # at right place
        pi = partition(arr, low, high)
  
        # Separately sort elements before
        # partition and after partition
        quickSort(arr, low, pi-1)
        quickSort(arr, pi + 1, high)
  
# Driver Code
if __name__ == '__main__' :
      
    arr = [4, 2, 6, 9, 2]
    n = len(arr)
      
    # Calling quickSort function
    quickSort(arr, 0, n - 1)
      
    for i in range(n):
        print(arr[i], end = " ")


C#




// C# program for implementation of
// QuickSort
using System;
  
class GFG {
  
    /* This function takes last element
    as pivot, places the pivot element
    at its correct position in sorted
    array, and places all smaller 
    (smaller than pivot) to left of
    pivot and all greater elements to 
    right of pivot */
    static int partition(int[] arr,
                         int low, int high)
    {
        int temp;
        int pivot = arr[high];
  
        // index of smaller element
        int i = (low - 1);
        for (int j = low; j <= high - 1; j++) {
  
            // If current element is
            // smaller than or
            // equal to pivot
            if (arr[j] <= pivot) {
                i++;
  
                // swap arr[i] and arr[j]
                temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
  
        // swap arr[i+1] and arr[high]
        // (or pivot)
        temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
  
        return i + 1;
    }
  
    /* The main function that implements
    QuickSort() arr[] --> Array to be 
    sorted,
    low --> Starting index,
    high --> Ending index */
    static void qSort(int[] arr, int low,
                      int high)
    {
        if (low < high) {
            /* pi is partitioning index, 
            arr[pi] is now at right place */
            int pi = partition(arr, low, high);
  
            // Recursively sort elements
            // before partition and after
            // partition
            qSort(arr, low, pi - 1);
            qSort(arr, pi + 1, high);
        }
    }
  
    // Driver code
    public static void Main()
    {
  
        int n = 5;
        int[] arr = { 4, 2, 6, 9, 2 };
  
        qSort(arr, 0, n - 1);
  
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
    }
}
  
// This code is contributed by nitin mittal.


PHP




<?php
// PHP code for recursive function 
// of Quicksort 
  
// Function to swap numbers 
function swap(&$a, &$b)
    $temp = $a
    $a = $b
    $b = $temp
  
/* This function takes last element as pivot, 
places the pivot element at its correct 
position in sorted array, and places 
all smaller (smaller than pivot) to left 
of pivot and all greater elements to 
right of pivot */
function partition (&$arr, $l, $h
    $x = $arr[$h]; 
    $i = ($l - 1); 
  
    for ($j = $l; $j <= $h - 1; $j++) 
    
        if ($arr[$j] <= $x
        
            $i++; 
            swap ($arr[$i], $arr[$j]); 
        
    
    swap ($arr[$i + 1], $arr[$h]); 
    return ($i + 1); 
  
/* A[] --> Array to be sorted, 
l --> Starting index, 
h --> Ending index */
function quickSort(&$A, $l, $h
    if ($l < $h
    
        /* Partitioning index */
        $p = partition($A, $l, $h); 
        quickSort($A, $l, $p - 1); 
        quickSort($A, $p + 1, $h); 
    
      
  
// Driver code 
$n = 5; 
$arr = array(4, 2, 6, 9, 2); 
  
quickSort($arr, 0, $n - 1); 
  
for($i = 0; $i < $n; $i++)
    echo $arr[$i] . " "
  
// This code is contributed by
// rathbhupendra
?>


Javascript




<script>
  
    // JavaScript program for implementation of QuickSort
      
    /* This function takes last element
    as pivot, places the pivot element
    at its correct position in sorted
    array, and places all smaller 
    (smaller than pivot) to left of
    pivot and all greater elements to 
    right of pivot */
    function partition(arr, low, high)
    {
        let temp;
        let pivot = arr[high];
    
        // index of smaller element
        let i = (low - 1);
        for (let j = low; j <= high - 1; j++) {
    
            // If current element is
            // smaller than or
            // equal to pivot
            if (arr[j] <= pivot) {
                i++;
    
                // swap arr[i] and arr[j]
                temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    
        // swap arr[i+1] and arr[high]
        // (or pivot)
        temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
    
        return i + 1;
    }
    
    /* The main function that implements
    QuickSort() arr[] --> Array to be 
    sorted,
    low --> Starting index,
    high --> Ending index */
    function qSort(arr, low, high)
    {
        if (low < high) {
            /* pi is partitioning index, 
            arr[pi] is now at right place */
            let pi = partition(arr, low, high);
    
            // Recursively sort elements
            // before partition and after
            // partition
            qSort(arr, low, pi - 1);
            qSort(arr, pi + 1, high);
        }
    }
      
    let n = 5;
    let arr = [ 4, 2, 6, 9, 2 ];
  
    qSort(arr, 0, n - 1);
  
    for (let i = 0; i < n; i++)
      document.write(arr[i] + " ");
    
</script>


Output:  

2 2 4 6 9

The above implementation can be optimized in many ways
1) The above implementation uses the last index as a pivot. This causes worst-case behavior on already sorted arrays, which is a commonly occurring case. The problem can be solved by choosing either a random index for the pivot or choosing the middle index of the partition or choosing the median of the first, middle, and last element of the partition for the pivot. (See this for details)
2) To reduce the recursion depth, recur first for the smaller half of the array, and use a tail call to recurse into the other. 
3) Insertion sort works better for small subarrays. Insertion sort can be used for invocations on such small arrays (i.e. where the length is less than a threshold t determined experimentally). For example, this library implementation of Quicksort uses insertion sort below size 7. 
Despite the above optimizations, the function remains recursive and uses function call stack to store intermediate values of l and h. The function call stack stores other bookkeeping information together with parameters. Also, function calls involve overheads like storing activation records of the caller function and then resuming execution. 
The above function can be easily converted to an iterative version with the help of an auxiliary stack. Following is an iterative implementation of the above recursive code. 
 

C++




// An iterative implementation of quick sort
#include <bits/stdc++.h>
using namespace std;
  
// A utility function to swap two elements
void swap(int* a, int* b)
{
    int t = *a;
    *a = *b;
    *b = t;
}
  
/* This function is same in both iterative and recursive*/
int partition(int arr[], int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
  
    for (int j = l; j <= h - 1; j++) {
        if (arr[j] <= x) {
            i++;
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[h]);
    return (i + 1);
}
  
/* A[] --> Array to be sorted, 
l --> Starting index, 
h --> Ending index */
void quickSortIterative(int arr[], int l, int h)
{
    // Create an auxiliary stack
    int stack[h - l + 1];
  
    // initialize top of stack
    int top = -1;
  
    // push initial values of l and h to stack
    stack[++top] = l;
    stack[++top] = h;
  
    // Keep popping from stack while is not empty
    while (top >= 0) {
        // Pop h and l
        h = stack[top--];
        l = stack[top--];
  
        // Set pivot element at its correct position
        // in sorted array
        int p = partition(arr, l, h);
  
        // If there are elements on left side of pivot,
        // then push left side to stack
        if (p - 1 > l) {
            stack[++top] = l;
            stack[++top] = p - 1;
        }
  
        // If there are elements on right side of pivot,
        // then push right side to stack
        if (p + 1 < h) {
            stack[++top] = p + 1;
            stack[++top] = h;
        }
    }
}
  
// A utility function to print contents of arr
void printArr(int arr[], int n)
{
    int i;
    for (i = 0; i < n; ++i)
        cout << arr[i] << " ";
}
  
// Driver code
int main()
{
    int arr[] = { 4, 3, 5, 2, 1, 3, 2, 3 };
    int n = sizeof(arr) / sizeof(*arr);
    quickSortIterative(arr, 0, n - 1);
    printArr(arr, n);
    return 0;
}
  
// This is code is contributed by rathbhupendra


C




// An iterative implementation of quick sort
#include <stdio.h>
  
// A utility function to swap two elements
void swap(int* a, int* b)
{
    int t = *a;
    *a = *b;
    *b = t;
}
  
/* This function is same in both iterative and recursive*/
int partition(int arr[], int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
  
    for (int j = l; j <= h - 1; j++) {
        if (arr[j] <= x) {
            i++;
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[h]);
    return (i + 1);
}
  
/* A[] --> Array to be sorted, 
   l  --> Starting index, 
   h  --> Ending index */
void quickSortIterative(int arr[], int l, int h)
{
    // Create an auxiliary stack
    int stack[h - l + 1];
  
    // initialize top of stack
    int top = -1;
  
    // push initial values of l and h to stack
    stack[++top] = l;
    stack[++top] = h;
  
    // Keep popping from stack while is not empty
    while (top >= 0) {
        // Pop h and l
        h = stack[top--];
        l = stack[top--];
  
        // Set pivot element at its correct position
        // in sorted array
        int p = partition(arr, l, h);
  
        // If there are elements on left side of pivot,
        // then push left side to stack
        if (p - 1 > l) {
            stack[++top] = l;
            stack[++top] = p - 1;
        }
  
        // If there are elements on right side of pivot,
        // then push right side to stack
        if (p + 1 < h) {
            stack[++top] = p + 1;
            stack[++top] = h;
        }
    }
}
  
// A utility function to print contents of arr
void printArr(int arr[], int n)
{
    int i;
    for (i = 0; i < n; ++i)
        printf("%d ", arr[i]);
}
  
// Driver program to test above functions
int main()
{
    int arr[] = { 4, 3, 5, 2, 1, 3, 2, 3 };
    int n = sizeof(arr) / sizeof(*arr);
    quickSortIterative(arr, 0, n - 1);
    printArr(arr, n);
    return 0;
}


Java




// Java program for implementation of QuickSort
import java.util.*;
  
class QuickSort {
    /* This function takes last element as pivot,
    places the pivot element at its correct
    position in sorted array, and places all
    smaller (smaller than pivot) to left of
    pivot and all greater elements to right
    of pivot */
    static int partition(int arr[], int low, int high)
    {
        int pivot = arr[high];
  
        // index of smaller element
        int i = (low - 1);
        for (int j = low; j <= high - 1; j++) {
            // If current element is smaller than or
            // equal to pivot
            if (arr[j] <= pivot) {
                i++;
  
                // swap arr[i] and arr[j]
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
  
        // swap arr[i+1] and arr[high] (or pivot)
        int temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
  
        return i + 1;
    }
  
    /* A[] --> Array to be sorted, 
   l  --> Starting index, 
   h  --> Ending index */
    static void quickSortIterative(int arr[], int l, int h)
    {
        // Create an auxiliary stack
        int[] stack = new int[h - l + 1];
  
        // initialize top of stack
        int top = -1;
  
        // push initial values of l and h to stack
        stack[++top] = l;
        stack[++top] = h;
  
        // Keep popping from stack while is not empty
        while (top >= 0) {
            // Pop h and l
            h = stack[top--];
            l = stack[top--];
  
            // Set pivot element at its correct position
            // in sorted array
            int p = partition(arr, l, h);
  
            // If there are elements on left side of pivot,
            // then push left side to stack
            if (p - 1 > l) {
                stack[++top] = l;
                stack[++top] = p - 1;
            }
  
            // If there are elements on right side of pivot,
            // then push right side to stack
            if (p + 1 < h) {
                stack[++top] = p + 1;
                stack[++top] = h;
            }
        }
    }
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 4, 3, 5, 2, 1, 3, 2, 3 };
        int n = 8;
  
        // Function calling
        quickSortIterative(arr, 0, n - 1);
  
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i] + " ");
        }
    }
}


Python




# Python program for implementation of Quicksort 
  
# This function is same in both iterative and recursive
def partition(arr, l, h):
    i = ( l - 1 )
    x = arr[h]
  
    for j in range(l, h):
        if   arr[j] <= x:
  
            # increment index of smaller element
            i = i + 1
            arr[i], arr[j] = arr[j], arr[i]
  
    arr[i + 1], arr[h] = arr[h], arr[i + 1]
    return (i + 1)
  
# Function to do Quick sort
# arr[] --> Array to be sorted,
# l  --> Starting index,
# h  --> Ending index
def quickSortIterative(arr, l, h):
  
    # Create an auxiliary stack
    size = h - l + 1
    stack = [0] * (size)
  
    # initialize top of stack
    top = -1
  
    # push initial values of l and h to stack
    top = top + 1
    stack[top] = l
    top = top + 1
    stack[top] = h
  
    # Keep popping from stack while is not empty
    while top >= 0:
  
        # Pop h and l
        h = stack[top]
        top = top - 1
        l = stack[top]
        top = top - 1
  
        # Set pivot element at its correct position in
        # sorted array
        p = partition( arr, l, h )
  
        # If there are elements on left side of pivot,
        # then push left side to stack
        if p-1 > l:
            top = top + 1
            stack[top] = l
            top = top + 1
            stack[top] = p - 1
  
        # If there are elements on right side of pivot,
        # then push right side to stack
        if p + 1 < h:
            top = top + 1
            stack[top] = p + 1
            top = top + 1
            stack[top] = h
  
# Driver code to test above
arr = [4, 3, 5, 2, 1, 3, 2, 3]
n = len(arr)
quickSortIterative(arr, 0, n-1)
print ("Sorted array is:")
for i in range(n):
    print ("% d" % arr[i]),
  
# This code is contributed by Mohit Kumra


C#




// C# program for implementation of QuickSort
using System;
  
class GFG {
  
    /* This function takes last element as pivot,
    places the pivot element at its correct
    position in sorted array, and places all
    smaller (smaller than pivot) to left of
    pivot and all greater elements to right
    of pivot */
    static int partition(int[] arr, int low,
                         int high)
    {
        int temp;
        int pivot = arr[high];
  
        // index of smaller element
        int i = (low - 1);
        for (int j = low; j <= high - 1; j++) {
            // If current element is smaller
            // than or equal to pivot
            if (arr[j] <= pivot) {
                i++;
  
                // swap arr[i] and arr[j]
                temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
  
        // swap arr[i+1] and arr[high]
        // (or pivot)
  
        temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
  
        return i + 1;
    }
  
    /* A[] --> Array to be sorted, 
    l --> Starting index, 
    h --> Ending index */
    static void quickSortIterative(int[] arr,
                                   int l, int h)
    {
        // Create an auxiliary stack
        int[] stack = new int[h - l + 1];
  
        // initialize top of stack
        int top = -1;
  
        // push initial values of l and h to
        // stack
        stack[++top] = l;
        stack[++top] = h;
  
        // Keep popping from stack while
        // is not empty
        while (top >= 0) {
            // Pop h and l
            h = stack[top--];
            l = stack[top--];
  
            // Set pivot element at its
            // correct position in
            // sorted array
            int p = partition(arr, l, h);
  
            // If there are elements on
            // left side of pivot, then
            // push left side to stack
            if (p - 1 > l) {
                stack[++top] = l;
                stack[++top] = p - 1;
            }
  
            // If there are elements on
            // right side of pivot, then
            // push right side to stack
            if (p + 1 < h) {
                stack[++top] = p + 1;
                stack[++top] = h;
            }
        }
    }
  
    // Driver code
    public static void Main()
    {
        int[] arr = { 4, 3, 5, 2, 1, 3, 2, 3 };
        int n = 8;
  
        // Function calling
        quickSortIterative(arr, 0, n - 1);
  
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
    }
}
  
// This code is contributed by anuj_67.


PHP




<?php
// An iterative implementation of quick sort 
  
// A utility function to swap two elements 
function swap ( &$a, &$b
    $t = $a
    $a = $b
    $b = $t
  
/* This function is same in both iterative and recursive*/
function partition (&$arr, $l, $h
    $x = $arr[$h]; 
    $i = ($l - 1); 
  
    for ($j = $l; $j <= $h- 1; $j++) 
    
        if ($arr[$j] <= $x
        
            $i++; 
            swap ($arr[$i], $arr[$j]); 
        
    
    swap ($arr[$i + 1], $arr[$h]); 
    return ($i + 1); 
  
/* A[] --> Array to be sorted, 
l --> Starting index, 
h --> Ending index */
function quickSortIterative (&$arr, $l, $h
    // Create an auxiliary stack 
    $stack=array_fill(0, $h - $l + 1, 0); 
  
    // initialize top of stack 
    $top = -1; 
  
    // push initial values of l and h to stack 
    $stack[ ++$top ] = $l
    $stack[ ++$top ] = $h
  
    // Keep popping from stack while is not empty 
    while ( $top >= 0 ) 
    
        // Pop h and l 
        $h = $stack[ $top-- ]; 
        $l = $stack[ $top-- ]; 
  
        // Set pivot element at its correct position 
        // in sorted array 
        $p = partition( $arr, $l, $h ); 
  
        // If there are elements on left side of pivot, 
        // then push left side to stack 
        if ( $p-1 > $l
        
            $stack[ ++$top ] = $l
            $stack[ ++$top ] = $p - 1; 
        
  
        // If there are elements on right side of pivot, 
        // then push right side to stack 
        if ( $p+1 < $h
        
            $stack[ ++$top ] = $p + 1; 
            $stack[ ++$top ] = $h
        
    
  
// A utility function to print contents of arr 
function printArr( $arr, $n
    for ( $i = 0; $i < $n; ++$i
        echo $arr[$i]." "
  
// Driver code 
    $arr = array(4, 3, 5, 2, 1, 3, 2, 3); 
    $n = count($arr); 
    quickSortIterative($arr, 0, $n - 1 ); 
    printArr($arr, $n ); 
  
// This is code is contributed by chandan_jnu
?>


Javascript




<script>
    // Javascript program for implementation of QuickSort
      
    /* This function takes last element as pivot,
    places the pivot element at its correct
    position in sorted array, and places all
    smaller (smaller than pivot) to left of
    pivot and all greater elements to right
    of pivot */
    function partition(arr, low, high)
    {
        let temp;
        let pivot = arr[high];
   
        // index of smaller element
        let i = (low - 1);
        for (let j = low; j <= high - 1; j++) {
            // If current element is smaller
            // than or equal to pivot
            if (arr[j] <= pivot) {
                i++;
   
                // swap arr[i] and arr[j]
                temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
   
        // swap arr[i+1] and arr[high]
        // (or pivot)
   
        temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
   
        return i + 1;
    }
   
    /* A[] --> Array to be sorted,
    l --> Starting index,
    h --> Ending index */
    function quickSortIterative(arr, l, h)
    {
        // Create an auxiliary stack
        let stack = new Array(h - l + 1);
        stack.fill(0);
   
        // initialize top of stack
        let top = -1;
   
        // push initial values of l and h to
        // stack
        stack[++top] = l;
        stack[++top] = h;
   
        // Keep popping from stack while
        // is not empty
        while (top >= 0) {
            // Pop h and l
            h = stack[top--];
            l = stack[top--];
   
            // Set pivot element at its
            // correct position in
            // sorted array
            let p = partition(arr, l, h);
   
            // If there are elements on
            // left side of pivot, then
            // push left side to stack
            if (p - 1 > l) {
                stack[++top] = l;
                stack[++top] = p - 1;
            }
   
            // If there are elements on
            // right side of pivot, then
            // push right side to stack
            if (p + 1 < h) {
                stack[++top] = p + 1;
                stack[++top] = h;
            }
        }
    }
      
    let arr = [ 4, 3, 5, 2, 1, 3, 2, 3 ];
    let n = 8;
  
    // Function calling
    quickSortIterative(arr, 0, n - 1);
  
    for (let i = 0; i < n; i++)
      document.write(arr[i] + " ");
  
// This code is contributed by mukesh07.
</script>


 

Output: 

1 2 2 3 3 3 4 5

Time Complexity: O(n*log(n))
Auxiliary Space: O(n)

The above-mentioned optimizations for recursive quicksort can also be applied to the iterative version.
1) Partition process is the same in both recursive and iterative. The same techniques to choose optimal pivot can also be applied to the iterative version.
2) To reduce the stack size, first push the indexes of smaller half.
3) Use insertion sort when the size reduces below an experimentally calculated threshold.
References: 
http://en.wikipedia.org/wiki/Quicksort
This article is compiled by Aashish Barnwal and reviewed by neveropen team. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments