Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIIntroduction to Primality Test and School Method

Introduction to Primality Test and School Method

Given a positive integer, check if the number is prime or not. A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself. Examples of the first few prime numbers are {2, 3, 5, …}
Examples : 

Input:  n = 11
Output: true

Input:  n = 15
Output: false

Input:  n = 1
Output: false
 

Recommended Practice

School Method: A simple solution is to iterate through all numbers from 2 to n-1 and for every number check if it divides n. If we find any number that divides, we return false. 

Below is the implementation of this method. 

C++




// A school method based C++ program to check if a
// number is prime
#include <bits/stdc++.h>
using namespace std;
  
bool isPrime(int n)
{
    // Corner case
    if (n <= 1)
        return false;
  
    // Check from 2 to n-1
    for (int i = 2; i < n; i++)
        if (n % i == 0)
            return false;
  
    return true;
}
  
// Driver Program to test above function
int main()
{
    isPrime(11) ? cout << " true\n" : cout << " false\n";
    isPrime(15) ? cout << " true\n" : cout << " false\n";
    return 0;
}


Java




// A school method based JAVA program
// to check if a number is prime
class GFG {
  
    static boolean isPrime(int n)
    {
        // Corner case
        if (n <= 1)
            return false;
  
        // Check from 2 to n-1
        for (int i = 2; i < n; i++)
            if (n % i == 0)
                return false;
  
        return true;
    }
  
    // Driver Program
    public static void main(String args[])
    {
        if (isPrime(11))
            System.out.println(" true");
        else
            System.out.println(" false");
        if (isPrime(15))
            System.out.println(" true");
        else
            System.out.println(" false");
    }
}
  
// This code is contributed
// by Nikita Tiwari.


Python3




# A school method based Python3
# program to check if a number
# is prime
  
  
def isPrime(n):
  
    # Corner case
    if n <= 1:
        return False
  
    # Check from 2 to n-1
    for i in range(2, n):
        if n % i == 0:
            return False
  
    return True
  
  
# Driver Program to test above function
print("true") if isPrime(11) else print("false")
print("true") if isPrime(14) else print("false")
  
# This code is contributed by Smitha Dinesh Semwal


C#




// A optimized school method based C#
// program to check if a number is prime
using System;
  
namespace prime {
public class GFG {
    public static bool isprime(int n)
    {
        // Corner cases
        if (n <= 1)
            return false;
  
        for (int i = 2; i < n; i++)
            if (n % i == 0)
                return false;
  
        return true;
    }
  
    // Driver program
    public static void Main()
    {
        if (isprime(11))
            Console.WriteLine("true");
        else
            Console.WriteLine("false");
  
        if (isprime(15))
            Console.WriteLine("true");
        else
            Console.WriteLine("false");
    }
}
}
  
// This code is contributed by Sam007


PHP




<?php
// A school method based PHP 
// program to check if a number 
// is prime
  
function isPrime($n)
{
    // Corner case
    if ($n <= 1) return false;
  
    // Check from 2 to n-1
    for ($i = 2; $i < $n; $i++)
        if ($n % $i == 0)
            return false;
  
    return true;
}
  
// Driver Code
$tet = isPrime(11) ? " true\n"
                     " false\n";
echo $tet;
$tet = isPrime(15) ? " true\n"
                     " false\n";
echo $tet;
  
// This code is contributed by m_kit
?>


Javascript




<script>
  
// A school method based Javascript program to check if a 
// number is prime 
function isPrime(n) 
    // Corner case 
    if (n <= 1) return false
  
    // Check from 2 to n-1 
    for (let i = 2; i < n; i++) 
        if (n % i == 0) 
            return false
    return true
  
// Driver Program to test above function 
    isPrime(11)? document.write(" true" + "<br>"): document.write(" false" + "<br>"); 
    isPrime(15)? document.write(" true" + "<br>"): document.write(" false" + "<br>"); 
  
// This code is contributed by Mayank Tyagi
  
</script>


Output

 true
 false

Time complexity: O(n)
Auxiliary Space: O(1)

Optimized School Method: We can do the following optimizations: Instead of checking till n, we can check till √n because a larger factor of n must be a multiple of a smaller factor that has been already checked. The implementation of this method is as follows:

C++




// Optimised school method based C++ program to check if a
// number is prime
#include <bits/stdc++.h>
using namespace std;
  
bool isPrime(int n)
{
    // Corner case
    if (n <= 1)
        return false;
  
    // Check from 2 to square root of n
    for (int i = 2; i <= sqrt(n); i++)
        if (n % i == 0)
            return false;
  
    return true;
}
  
// Driver Program to test above function
int main()
{
    isPrime(11) ? cout << " true\n" : cout << " false\n";
    isPrime(15) ? cout << " true\n" : cout << " false\n";
    return 0;
}
  
// This code is contributed by Vikash Sangai


Java




// Optimised school method based JAVA program
// to check if a number is prime
class GFG {
  
    static boolean isPrime(int n)
    {
        // Corner case
        if (n <= 1)
            return false;
  
        // Check from 2 to square root of n
        for (int i = 2; i * i <= n; i++)
            if (n % i == 0)
                return false;
  
        return true;
    }
  
    // Driver Program
    public static void main(String args[])
    {
        if (isPrime(11))
            System.out.println(" true");
        else
            System.out.println(" false");
        if (isPrime(15))
            System.out.println(" true");
        else
            System.out.println(" false");
    }
}
  
// This code is contributed by Vikash Sangai


Python3




# Optimised school method based PYTHON program
# to check if a number is prime
# import the math module
import math
  
# function to check whether the number is prime or not
  
  
def isPrime(n):
  
    # Corner case
    if (n <= 1):
        return False
  
    # Check from 2 to square root of n
    for i in range(2, int(math.sqrt(n)) + 1):
        if (n % i == 0):
            return False
    return True
  
  
# Driver Program to test above function
print("true") if isPrime(11) else print("false")
print("true") if isPrime(15) else print("false")
  
# This code is contributed by bhoomikavemula


C#




// Optimised school method based C#
// program to check if a number is prime
using System;
  
namespace prime {
public class GFG {
    public static bool isprime(int n)
    {
        // Corner cases
        if (n <= 1)
            return false;
  
        for (int i = 2; i * i <= n; i++)
            if (n % i == 0)
                return false;
  
        return true;
    }
  
    // Driver program
    public static void Main()
    {
        if (isprime(11))
            Console.WriteLine("true");
        else
            Console.WriteLine("false");
  
        if (isprime(15))
            Console.WriteLine("true");
        else
            Console.WriteLine("false");
    }
}
}
  
// This code is contributed by Vikash Sangai


Javascript




<script>
        // JavaScript code for the above approach
  
  function isPrime(n)
    {
        // Corner case
        if (n <= 1) return false;
       
        // Check from 2 to square root of n
        for (let i = 2; i*i <= n; i++)
            if (n % i == 0)
                return false;
       
        return true;
    }
  
        // Driver Code
          
        if(isPrime(11))
            document.write(" true" + "<br/>");
        else
            document.write(" false" + "<br/>");
        if(isPrime(15))
            document.write(" true" + "<br/>");
        else
           document.write(" false" + "<br/>");
  
// This code is contributed by sanjoy_62.
    </script>


Output

 true
 false

Time Complexity: O(√n)
Auxiliary Space: O(1)

Another approach: It is based on the fact that all primes greater than 3 are of the form 6k ± 1, where k is any integer greater than 0. This is because all integers can be expressed as (6k + i), where i = −1, 0, 1, 2, 3, or 4. And note that 2 divides (6k + 0), (6k + 2), and (6k + 4) and 3 divides (6k + 3). So, a more efficient method is to test whether n is divisible by 2 or 3, then to check through all numbers of the form 6k ± 1 <= √n. This is 3 times faster than testing all numbers up to √n. (Source: wikipedia).  

Below is the implementation of the above approach:

C++




// C++ program to check the given number
// is prime or not
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if the given number
// is prime or not.
bool isPrime(int n)
{
    if (n == 2 || n == 3)
        return true;
  
    if (n <= 1 || n % 2 == 0 || n % 3 == 0)
        return false;
  
    // To check through all numbers of the form 6k ± 1
    for (int i = 5; i * i <= n; i += 6) {
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
    }
  
    return true;
}
  
// Driver Code
  
int main()
{
    isPrime(11) ? cout << " true\n" : cout << " false\n";
    isPrime(15) ? cout << " true\n" : cout << " false\n";
    return 0;
}


Java




// JAVA program to check the given number
// is prime or not
class GFG {
  
  static boolean isPrime(int n)
  {
    // since 2 and 3 are prime
    if (n == 2 || n == 3)
      return true;
  
    // if n<=1 or divided by 2 or 3 then it can not be prime
    if (n <= 1 || n % 2 == 0 || n % 3 == 0)
      return false;
  
    // To check through all numbers of the form 6k ± 1
    for (int i = 5; i * i <= n; i += 6
    {
      if (n % i == 0 || n % (i + 2) == 0)
        return false;
    }
  
    return true;
  }
  
  // Driver Program
  public static void main(String args[])
  {
    if (isPrime(11))
      System.out.println(" true");
    else
      System.out.println(" false");
    if (isPrime(15))
      System.out.println(" true");
    else
      System.out.println(" false");
  }
}
  
// This code is contributed by Ujjwal Kumar Bhardwaj


Python3




# Python program to check the given number
# is prime or not
  
# Function to check if the given number
# is prime or not.
import math
  
def isPrime(n):
    if n == 2 or n == 3:
        return True
    elif n <= 1 or n % 2 == 0 or n % 3 == 0:
        return False
        
        # To check through all numbers of the form 6k ± 1
    # until i <= square root of n, with step value 6
    for i in range(5, int(math.sqrt(n))+1, 6):
        if n % i == 0 or n % (i+2) == 0:
            return False
  
    return True
  
# # Driver code
print(isPrime(11))
print(isPrime(20))
  
# # This code is contributed by Harsh Master


C#




// C# program to check the given number
// is prime or not
using System;
class GFG {
  
static bool isPrime(int n)
{
    // since 2 and 3 are prime
    if (n == 2 || n == 3)
    return true;
  
    // if n<=1 or divided by 2 or 3 then it can not be prime
    if (n <= 1 || n % 2 == 0 || n % 3 == 0)
    return false;
  
    // To check through all numbers of the form 6k ± 1
    for (int i = 5; i * i <= n; i += 6)
    {
    if (n % i == 0 || n % (i + 2) == 0)
        return false;
    }
  
    return true;
}
  
// Driver Program
public static void Main(String[] args)
{
    if (isPrime(11))
    Console.WriteLine(" true");
    else
    Console.WriteLine(" false");
    if (isPrime(15))
    Console.WriteLine(" true");
    else
    Console.WriteLine(" false");
}
}
  
  
// This code is contributed by Aman Kumar


Javascript




<script>
    // JavaScript program to check the given number
    // is prime or not
      
    // Function to check if the given number
    // is prime or not.
    function isPrime(n)
    {
        if (n == 2 || n == 3)
            return true;
      
        if (n <= 1 || n % 2 == 0 || n % 3 == 0)
            return false;
      
        // To check through all numbers of the form 6k ± 1
        for (let i = 5; i * i <= n; i += 6) {
            if (n % i == 0 || n % (i + 2) == 0)
                return false;
        }
      
        return true;
    }
      
    // Driver Code
      
        isPrime(11) ? document.write(" true" + "<br/>") : document.write(" false" + "<br/>");
        isPrime(15) ? document.write(" true" + "<br/>") : document.write(" false" + "<br/>");
      
    // This code is contributed by Pushpesh Raj.
</script>


Output

 true
 false

Time Complexity: O(√n)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments