Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIInsert minimum number in array so that sum of array becomes prime

Insert minimum number in array so that sum of array becomes prime

Given an array of n integers. Find minimum number to be inserted in array, so that sum of all elements of array becomes prime. If sum is already prime, then return 0.

Examples : 

Input : arr[] = { 2, 4, 6, 8, 12 }
Output : 5

Input : arr[] = { 3, 5, 7 }
Output : 0

Naive approach: The simplest approach to solve this problem is to first find the sum of array elements. Then check if this sum is prime or not, if sum is prime return zero otherwise find prime number just greater than this sum. We can find prime number greater than sum by checking if a number is prime or not from (sum+1) until we find a prime number. Once a prime number just greater than sum is found, return difference of sum and this prime number.

Below is implementation of above idea: 

C++




// C++ program to find minimum number to
// insert in array so their sum is prime
#include <bits/stdc++.h>
using namespace std;
 
// function to check if a
// number is prime or not
bool isPrime(int n)
{
    // Corner case
    if (n <= 1)
        return false;
 
    // Check from 2 to n - 1
    for (int i = 2; i < n; i++)
        if (n % i == 0)
            return false;
 
    return true;
}
 
// Find prime number
// greater than a number
int findPrime(int n)
{
    int num = n + 1;
 
    // find prime greater than n
    while (num)
    {
        // check if num is prime
        if (isPrime(num))
            return num;
 
        // increment num
        num = num + 1;
    }
 
    return 0;
}
 
// To find number to be added
// so sum of array is prime
int minNumber(int arr[], int n)
{
    int sum = 0;
 
    // To find sum of array elements
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    // if sum is already prime
    // return 0
    if (isPrime(sum))
        return 0;
 
    // To find prime number
    // greater than sum
    int num = findPrime(sum);
 
    // Return difference of
    // sum and num
    return num - sum;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 4, 6, 8, 12 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << minNumber(arr, n);
 
    return 0;
}


Java




// Java program to find minimum number to
// insert in array so their sum is prime
 
class GFG
{
    // function to check if a
    // number is prime or not
    static boolean isPrime(int n)
        {
            // Corner case
            if (n <= 1)
                return false;
 
            // Check from 2 to n - 1
            for (int i = 2; i < n; i++)
                if (n % i == 0)
                    return false;
 
            return true;
        }
 
    // Find prime number
    // greater than a number
    static int findPrime(int n)
        {
            int num = n + 1;
 
            // find prime greater than n
            while (num > 0)
                {
 
                    // check if num is prime
                    if (isPrime(num))
                        return num;
 
                    // increment num
                    num = num + 1;
                }
            return 0;
        }
 
    // To find number to be added
    // so sum of array is prime
    static int minNumber(int arr[], int n)
        {
            int sum = 0;
 
            // To find sum of array elements
            for (int i = 0; i < n; i++)
                sum += arr[i];
 
            // if sum is already prime
            // return 0
            if (isPrime(sum))
                return 0;
 
            // To find prime number
            // greater than sum
            int num = findPrime(sum);
 
            // Return difference of
            // sum and num
            return num - sum;
        }
 
    // Driver Code
    public static void main(String[]args)
        {
            int arr[] = { 2, 4, 6, 8, 12 };
            int n = arr.length;
            System.out.println(minNumber(arr, n));
        }
}
     
// This code is contributed by Azkia Anam.


Python3




# Python3 program to find minimum number to
# insert in array so their sum is prime
 
# function to check if a
# number is prime or not
def isPrime(n):
 
    # Corner case
    if n <= 1:
        return False
     
    # Check from 2 to n - 1
    for i in range(2, n):
        if n % i == 0:
            return False
     
    return True
 
# Find prime number
# greater than a number
def findPrime(n):
    num = n + 1
     
    # find prime greater than n
    while (num):
         
        # check if num is prime
        if isPrime(num):
            return num
         
        # Increment num
        num += 1
     
    return 0
 
# To find number to be added
# so sum of array is prime
def minNumber(arr):
    s = 0
     
    # To find sum of array elements
    for i in range(0, len(arr)):
        s += arr[i]
     
    # If sum is already prime
    # return 0
    if isPrime(s) :
        return 0
     
    # To find prime number
    # greater than sum
    num = findPrime(s)
     
    # Return difference of sum and num
    return num - s
 
# Driver code
arr = [ 2, 4, 6, 8, 12 ]
print (minNumber(arr))
 
# This code is contributed by Sachin Bisht


C#




// C# program to find minimum number to
// insert in array so their sum is prime
using System;
 
class GFG
{
    // function to check if a
    // number is prime or not
    static bool isPrime(int n)
        {
            // Corner case
            if (n <= 1)
                return false;
 
            // Check from 2 to n - 1
            for (int i = 2; i < n; i++)
                if (n % i == 0)
                    return false;
 
            return true;
        }
 
    // Find prime number
    // greater than a number
    static int findPrime(int n)
        {
            int num = n + 1;
 
            // find prime greater than n
            while (num > 0)
                {
 
                    // check if num is prime
                    if (isPrime(num))
                        return num;
 
                    // increment num
                    num = num + 1;
                }
            return 0;
        }
 
    // To find number to be added
    // so sum of array is prime
    static int minNumber(int []arr, int n)
        {
            int sum = 0;
 
            // To find sum of array elements
            for (int i = 0; i < n; i++)
                sum += arr[i];
 
            // if sum is already prime
            // return 0
            if (isPrime(sum))
                return 0;
 
            // To find prime number
            // greater than sum
            int num = findPrime(sum);
 
            // Return difference of sum and num
            return num - sum;
        }
 
    // Driver Code
    public static void Main()
        {
            int []arr = { 2, 4, 6, 8, 12 };
            int n = arr.Length;
            Console.Write(minNumber(arr, n));
        }
}
     
// This code is contributed by nitin mittal


PHP




<?php
// PHP program to find minimum number to
// insert in array so their sum is prime
 
// function to check if a
// number is prime or not
function isPrime($n)
{
     
    // Corner case
    if ($n <= 1)
        return false;
 
    // Check from 2 to n - 1
    for ($i = 2; $i < $n; $i++)
        if ($n % $i == 0)
            return false;
 
    return true;
}
 
// Find prime number
// greater than a number
function findPrime($n)
{
    $num = $n + 1;
 
    // find prime greater than n
    while ($num)
    {
        // check if num is prime
        if (isPrime($num))
            return $num;
 
        // increment num
        $num = $num + 1;
    }
 
    return 0;
}
 
// To find number to be added
// so sum of array is prime
function minNumber($arr, $n)
{
    $sum = 0;
 
    // To find sum of array elements
    for ($i = 0; $i < $n; $i++)
        $sum += $arr[$i];
 
    // if sum is already prime
    // return 0
    if (isPrime($sum))
        return 0;
 
    // To find prime number
    // greater than sum
    $num = findPrime($sum);
 
    // Return difference of
    // sum and num
    return $num - $sum;
}
 
    // Driver Code
    $arr = array(2, 4, 6, 8, 12);
    $n = sizeof($arr);
    echo minNumber($arr, $n);
 
// This code is contributed by nitin mittal
?>


Javascript




<script>
 
// Javascript program to find minimum number to
// insert in array so their sum is prime
     
    // function to check if a
    // number is prime or not
    function isPrime(n)
    {
        // Corner case
            if (n <= 1)
                return false;
   
            // Check from 2 to n - 1
            for (let i = 2; i < n; i++)
                if (n % i == 0)
                    return false;
   
            return true;
    }
     
    // Find prime number
    // greater than a number
    function findPrime(n)
    {
        let num = n + 1;
   
            // find prime greater than n
            while (num > 0)
                {
   
                    // check if num is prime
                    if (isPrime(num))
                        return num;
   
                    // increment num
                    num = num + 1;
                }
            return 0;
    }
     
    // To find number to be added
    // so sum of array is prime
    function minNumber(arr,n)
    {
        let sum = 0;
   
            // To find sum of array elements
            for (let i = 0; i < n; i++)
                sum += arr[i];
   
            // if sum is already prime
            // return 0
            if (isPrime(sum))
                return 0;
   
            // To find prime number
            // greater than sum
            let num = findPrime(sum);
   
            // Return difference of
            // sum and num
            return num - sum;
    }
     
     // Driver Code
    let arr=[2, 4, 6, 8, 12 ];
    let n = arr.length;
    document.write(minNumber(arr, n));
     
    //This code is contributed by avanitrachhadiya2155
     
</script>


Output

5

Time Complexity: O( N2 )

Efficient Approach: We can optimize the above approach by efficiently pre calculating a large boolean array to check if a number is prime or not using sieve of eratosthenes. Once all prime number are generated, find prime number just greater than sum and return the difference between them. 

Below is the implementation of this approach: 

C++




// C++ program to find minimum number to
// insert in array so their sum is prime
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 100005
 
// Array to store primes
bool isPrime[MAX];
 
// function to calculate primes
// using sieve of eratosthenes
void sieveOfEratostheneses()
{
    memset(isPrime, true, sizeof(isPrime));
    isPrime[1] = false;
    for (int i = 2; i * i < MAX; i++)
    {
        if (isPrime[i])
        {
            for (int j = 2 * i; j < MAX; j += i)
                isPrime[j] = false;
        }
    }
}
 
// Find prime number
// greater than a number
int findPrime(int n)
{
    int num = n + 1;
 
    // To return prime number
    // greater than n
    while (num)
    {
        // check if num is prime
        if (isPrime[num])
            return num;
 
        // increment num
        num = num + 1;
    }
    return 0;
}
 
// To find number to be added
// so sum of array is prime
int minNumber(int arr[], int n)
{
    // call sieveOfEratostheneses
    // to calculate primes
    sieveOfEratostheneses();
 
    int sum = 0;
 
    // To find sum of array elements
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    if (isPrime[sum])
        return 0;
 
    // To find prime number
    // greater then sum
    int num = findPrime(sum);
 
    // Return difference of
    // sum and num
    return num - sum;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 4, 6, 8, 12 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << minNumber(arr, n);
 
    return 0;
}


Java




// Java program to find minimum number to
// insert in array so their sum is prime
 
class GFG
{
static int MAX = 100005;
 
// Array to store primes
static boolean[] isPrime = new boolean[MAX];
 
// function to calculate primes
// using sieve of eratosthenes
static void sieveOfEratostheneses()
{
    isPrime[1] = true;
    for (int i = 2; i * i < MAX; i++)
    {
        if (!isPrime[i])
        {
            for (int j = 2 * i; j < MAX; j += i)
                isPrime[j] = true;
        }
    }
}
 
// Find prime number greater
// than a number
static int findPrime(int n)
{
    int num = n + 1;
 
    // To return prime number
    // greater than n
    while (num > 0)
    {
        // check if num is prime
        if (!isPrime[num])
            return num;
 
        // increment num
        num = num + 1;
    }
    return 0;
}
 
// To find number to be added
// so sum of array is prime
static int minNumber(int arr[], int n)
{
    // call sieveOfEratostheneses
    // to calculate primes
    sieveOfEratostheneses();
 
    int sum = 0;
 
    // To find sum of array elements
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    if (!isPrime[sum])
        return 0;
 
    // To find prime number
    // greater then sum
    int num = findPrime(sum);
 
    // Return difference of
    // sum and num
    return num - sum;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 2, 4, 6, 8, 12 };
    int n = arr.length;
 
    System.out.println(minNumber(arr, n));
}
}
 
// This code is contributed by mits


Python3




# Python3 program to find minimum number to
# insert in array so their sum is prime
 
isPrime = [1] * 100005
 
# function to calculate prime
# using sieve of eratosthenes
def sieveOfEratostheneses():
    isPrime[1] = False
    i = 2
    while i * i < 100005:
        if(isPrime[i]):
            j = 2 * i
            while j < 100005:
                isPrime[j] = False
                j += i
        i += 1
    return
 
# Find prime number
# greater than a number
def findPrime(n):
    num = n + 1
     
    # find prime greater than n
    while(num):
         
        # check if num is prime
        if isPrime[num]:
            return num
         
        # Increment num
        num += 1
     
    return 0
 
# To find number to be added
# so sum of array is prime
def minNumber(arr):
     
    # call sieveOfEratostheneses to
    # calculate primes
    sieveOfEratostheneses()
     
    s = 0
     
    # To find sum of array elements
    for i in range(0, len(arr)):
        s += arr[i]
     
    # If sum is already prime
    # return 0
    if isPrime[s] == True:
        return 0
     
    # To find prime number
    # greater than sum
    num = findPrime(s)
     
    # Return difference of
    # sum and num
    return num - s
 
# Driver code
arr = [ 2, 4, 6, 8, 12 ]
print (minNumber(arr))
 
# This code is contributed by Sachin Bisht


C#




// C# program to find minimum number to
// insert in array so their sum is prime
 
class GFG
{
static int MAX = 100005;
 
// Array to store primes
static bool[] isPrime = new bool[MAX];
 
// function to calculate primes
// using sieve of eratosthenes
static void sieveOfEratostheneses()
{
    isPrime[1] = true;
    for (int i = 2; i * i < MAX; i++)
    {
        if (!isPrime[i])
        {
            for (int j = 2 * i; j < MAX; j += i)
                isPrime[j] = true;
        }
    }
}
 
// Find prime number greater
// than a number
static int findPrime(int n)
{
    int num = n + 1;
 
    // To return prime number
    // greater than n
    while (num > 0)
    {
        // check if num is prime
        if (!isPrime[num])
            return num;
 
        // increment num
        num = num + 1;
    }
    return 0;
}
 
// To find number to be added
// so sum of array is prime
static int minNumber(int[] arr, int n)
{
    // call sieveOfEratostheneses
    // to calculate primes
    sieveOfEratostheneses();
 
    int sum = 0;
 
    // To find sum of array elements
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    if (!isPrime[sum])
        return 0;
 
    // To find prime number
    // greater then sum
    int num = findPrime(sum);
 
    // Return difference of
    // sum and num
    return num - sum;
}
 
// Driver Code
public static void Main()
{
    int[] arr = { 2, 4, 6, 8, 12 };
    int n = arr.Length;
 
    System.Console.WriteLine(minNumber(arr, n));
}
}
 
// This code is contributed by mits


PHP




<?php
 
// PHP program to find minimum number to
// insert in array so their sum is prime
   
$MAX =100005;
   
// function to calculate primes 
// using sieve of eratosthenes
function sieveOfEratostheneses()
{
    $isPrime = array_fill(true,$MAX, NULL);
    $isPrime[1] = false;
    for ($i = 2; $i * $i < $MAX; $i++) 
    {
        if ($isPrime[$i]) 
        {
            for ($j = 2 * $i; $j < $MAX; $j += $i)
                $isPrime[$j] = false;
        }
    }
}
   
// Find prime number 
// greater than a number
function findPrime($n)
{
    $num = $n + 1;
   
    // To return prime number
    // greater than n
    while ($num
    {
        // check if num is prime
        if ($isPrime[$num])
            return $num;
   
        // increment num
        $num = $num + 1;
    }
    return 0;
}
   
// To find number to be added 
// so sum of array is prime
function minNumber(&$arr, $n)
{
    // call sieveOfEratostheneses
    // to calculate primes
    sieveOfEratostheneses();
   
    $sum = 0;
   
    // To find sum of array elements
    for ($i = 0; $i < $n; $i++)
        $sum += $arr[$i];
   
    if ($isPrime[$sum])
        return 0;
   
    // To find prime number
    // greater then sum
    $num = findPrime($sum);
   
    // Return difference of 
    // sum and num
    return $num - $sum;
}
   
// Driver Code
 
    $arr = array ( 2, 4, 6, 8, 12 );
    $n = sizeof($arr) / sizeof($arr[0]);
   
    echo minNumber($arr, $n);
   
    return 0;
?>


Javascript




<script>
 
// Javascript program to find minimum number to
// insert in array so their sum is prime
 
let MAX = 100005;
   
// Array to store primes
let isPrime = new Array(MAX).fill(0);
   
// function to calculate primes
// using sieve of eratosthenes
function sieveOfEratostheneses()
{
    isPrime[1] = true;
    for (let i = 2; i * i < MAX; i++)
    {
        if (!isPrime[i])
        {
            for (let j = 2 * i; j < MAX; j += i)
                isPrime[j] = true;
        }
    }
}
   
// Find prime number greater
// than a number
function findPrime(n)
{
    let num = n + 1;
   
    // To return prime number
    // greater than n
    while (num > 0)
    {
        // check if num is prime
        if (!isPrime[num])
            return num;
   
        // increment num
        num = num + 1;
    }
    return 0;
}
   
// To find number to be added
// so sum of array is prime
function minNumber(arr, n)
{
    // call sieveOfEratostheneses
    // to calculate primes
    sieveOfEratostheneses();
   
    let sum = 0;
   
    // To find sum of array elements
    for (let i = 0; i < n; i++)
        sum += arr[i];
   
    if (!isPrime[sum])
        return 0;
   
    // To find prime number
    // greater then sum
    let num = findPrime(sum);
   
    // Return difference of
    // sum and num
    return num - sum;
}
 
// driver program
     
    let arr = [ 2, 4, 6, 8, 12 ];
    let n = arr.length;
   
    document.write(minNumber(arr, n));
 
// This code is contributed by code_hunt.
</script>


Output

5

Time Complexity: O(N log(log N))

This article is contributed by nuclode. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments