Given an array of n integers. Find minimum number to be inserted in array, so that sum of all elements of array becomes prime. If sum is already prime, then return 0.
Examples :
Input : arr[] = { 2, 4, 6, 8, 12 } Output : 5 Input : arr[] = { 3, 5, 7 } Output : 0
Naive approach: The simplest approach to solve this problem is to first find the sum of array elements. Then check if this sum is prime or not, if sum is prime return zero otherwise find prime number just greater than this sum. We can find prime number greater than sum by checking if a number is prime or not from (sum+1) until we find a prime number. Once a prime number just greater than sum is found, return difference of sum and this prime number.
Below is implementation of above idea:
C++
// C++ program to find minimum number to // insert in array so their sum is prime #include <bits/stdc++.h> using namespace std; // function to check if a // number is prime or not bool isPrime( int n) { // Corner case if (n <= 1) return false ; // Check from 2 to n - 1 for ( int i = 2; i < n; i++) if (n % i == 0) return false ; return true ; } // Find prime number // greater than a number int findPrime( int n) { int num = n + 1; // find prime greater than n while (num) { // check if num is prime if (isPrime(num)) return num; // increment num num = num + 1; } return 0; } // To find number to be added // so sum of array is prime int minNumber( int arr[], int n) { int sum = 0; // To find sum of array elements for ( int i = 0; i < n; i++) sum += arr[i]; // if sum is already prime // return 0 if (isPrime(sum)) return 0; // To find prime number // greater than sum int num = findPrime(sum); // Return difference of // sum and num return num - sum; } // Driver code int main() { int arr[] = { 2, 4, 6, 8, 12 }; int n = sizeof (arr) / sizeof (arr[0]); cout << minNumber(arr, n); return 0; } |
Java
// Java program to find minimum number to // insert in array so their sum is prime class GFG { // function to check if a // number is prime or not static boolean isPrime( int n) { // Corner case if (n <= 1 ) return false ; // Check from 2 to n - 1 for ( int i = 2 ; i < n; i++) if (n % i == 0 ) return false ; return true ; } // Find prime number // greater than a number static int findPrime( int n) { int num = n + 1 ; // find prime greater than n while (num > 0 ) { // check if num is prime if (isPrime(num)) return num; // increment num num = num + 1 ; } return 0 ; } // To find number to be added // so sum of array is prime static int minNumber( int arr[], int n) { int sum = 0 ; // To find sum of array elements for ( int i = 0 ; i < n; i++) sum += arr[i]; // if sum is already prime // return 0 if (isPrime(sum)) return 0 ; // To find prime number // greater than sum int num = findPrime(sum); // Return difference of // sum and num return num - sum; } // Driver Code public static void main(String[]args) { int arr[] = { 2 , 4 , 6 , 8 , 12 }; int n = arr.length; System.out.println(minNumber(arr, n)); } } // This code is contributed by Azkia Anam. |
Python3
# Python3 program to find minimum number to # insert in array so their sum is prime # function to check if a # number is prime or not def isPrime(n): # Corner case if n < = 1 : return False # Check from 2 to n - 1 for i in range ( 2 , n): if n % i = = 0 : return False return True # Find prime number # greater than a number def findPrime(n): num = n + 1 # find prime greater than n while (num): # check if num is prime if isPrime(num): return num # Increment num num + = 1 return 0 # To find number to be added # so sum of array is prime def minNumber(arr): s = 0 # To find sum of array elements for i in range ( 0 , len (arr)): s + = arr[i] # If sum is already prime # return 0 if isPrime(s) : return 0 # To find prime number # greater than sum num = findPrime(s) # Return difference of sum and num return num - s # Driver code arr = [ 2 , 4 , 6 , 8 , 12 ] print (minNumber(arr)) # This code is contributed by Sachin Bisht |
C#
// C# program to find minimum number to // insert in array so their sum is prime using System; class GFG { // function to check if a // number is prime or not static bool isPrime( int n) { // Corner case if (n <= 1) return false ; // Check from 2 to n - 1 for ( int i = 2; i < n; i++) if (n % i == 0) return false ; return true ; } // Find prime number // greater than a number static int findPrime( int n) { int num = n + 1; // find prime greater than n while (num > 0) { // check if num is prime if (isPrime(num)) return num; // increment num num = num + 1; } return 0; } // To find number to be added // so sum of array is prime static int minNumber( int []arr, int n) { int sum = 0; // To find sum of array elements for ( int i = 0; i < n; i++) sum += arr[i]; // if sum is already prime // return 0 if (isPrime(sum)) return 0; // To find prime number // greater than sum int num = findPrime(sum); // Return difference of sum and num return num - sum; } // Driver Code public static void Main() { int []arr = { 2, 4, 6, 8, 12 }; int n = arr.Length; Console.Write(minNumber(arr, n)); } } // This code is contributed by nitin mittal |
PHP
<?php // PHP program to find minimum number to // insert in array so their sum is prime // function to check if a // number is prime or not function isPrime( $n ) { // Corner case if ( $n <= 1) return false; // Check from 2 to n - 1 for ( $i = 2; $i < $n ; $i ++) if ( $n % $i == 0) return false; return true; } // Find prime number // greater than a number function findPrime( $n ) { $num = $n + 1; // find prime greater than n while ( $num ) { // check if num is prime if (isPrime( $num )) return $num ; // increment num $num = $num + 1; } return 0; } // To find number to be added // so sum of array is prime function minNumber( $arr , $n ) { $sum = 0; // To find sum of array elements for ( $i = 0; $i < $n ; $i ++) $sum += $arr [ $i ]; // if sum is already prime // return 0 if (isPrime( $sum )) return 0; // To find prime number // greater than sum $num = findPrime( $sum ); // Return difference of // sum and num return $num - $sum ; } // Driver Code $arr = array (2, 4, 6, 8, 12); $n = sizeof( $arr ); echo minNumber( $arr , $n ); // This code is contributed by nitin mittal ?> |
Javascript
<script> // Javascript program to find minimum number to // insert in array so their sum is prime // function to check if a // number is prime or not function isPrime(n) { // Corner case if (n <= 1) return false ; // Check from 2 to n - 1 for (let i = 2; i < n; i++) if (n % i == 0) return false ; return true ; } // Find prime number // greater than a number function findPrime(n) { let num = n + 1; // find prime greater than n while (num > 0) { // check if num is prime if (isPrime(num)) return num; // increment num num = num + 1; } return 0; } // To find number to be added // so sum of array is prime function minNumber(arr,n) { let sum = 0; // To find sum of array elements for (let i = 0; i < n; i++) sum += arr[i]; // if sum is already prime // return 0 if (isPrime(sum)) return 0; // To find prime number // greater than sum let num = findPrime(sum); // Return difference of // sum and num return num - sum; } // Driver Code let arr=[2, 4, 6, 8, 12 ]; let n = arr.length; document.write(minNumber(arr, n)); //This code is contributed by avanitrachhadiya2155 </script> |
5
Time Complexity: O( N2 )
Efficient Approach: We can optimize the above approach by efficiently pre calculating a large boolean array to check if a number is prime or not using sieve of eratosthenes. Once all prime number are generated, find prime number just greater than sum and return the difference between them.
Below is the implementation of this approach:
C++
// C++ program to find minimum number to // insert in array so their sum is prime #include <bits/stdc++.h> using namespace std; #define MAX 100005 // Array to store primes bool isPrime[MAX]; // function to calculate primes // using sieve of eratosthenes void sieveOfEratostheneses() { memset (isPrime, true , sizeof (isPrime)); isPrime[1] = false ; for ( int i = 2; i * i < MAX; i++) { if (isPrime[i]) { for ( int j = 2 * i; j < MAX; j += i) isPrime[j] = false ; } } } // Find prime number // greater than a number int findPrime( int n) { int num = n + 1; // To return prime number // greater than n while (num) { // check if num is prime if (isPrime[num]) return num; // increment num num = num + 1; } return 0; } // To find number to be added // so sum of array is prime int minNumber( int arr[], int n) { // call sieveOfEratostheneses // to calculate primes sieveOfEratostheneses(); int sum = 0; // To find sum of array elements for ( int i = 0; i < n; i++) sum += arr[i]; if (isPrime[sum]) return 0; // To find prime number // greater then sum int num = findPrime(sum); // Return difference of // sum and num return num - sum; } // Driver Code int main() { int arr[] = { 2, 4, 6, 8, 12 }; int n = sizeof (arr) / sizeof (arr[0]); cout << minNumber(arr, n); return 0; } |
Java
// Java program to find minimum number to // insert in array so their sum is prime class GFG { static int MAX = 100005 ; // Array to store primes static boolean [] isPrime = new boolean [MAX]; // function to calculate primes // using sieve of eratosthenes static void sieveOfEratostheneses() { isPrime[ 1 ] = true ; for ( int i = 2 ; i * i < MAX; i++) { if (!isPrime[i]) { for ( int j = 2 * i; j < MAX; j += i) isPrime[j] = true ; } } } // Find prime number greater // than a number static int findPrime( int n) { int num = n + 1 ; // To return prime number // greater than n while (num > 0 ) { // check if num is prime if (!isPrime[num]) return num; // increment num num = num + 1 ; } return 0 ; } // To find number to be added // so sum of array is prime static int minNumber( int arr[], int n) { // call sieveOfEratostheneses // to calculate primes sieveOfEratostheneses(); int sum = 0 ; // To find sum of array elements for ( int i = 0 ; i < n; i++) sum += arr[i]; if (!isPrime[sum]) return 0 ; // To find prime number // greater then sum int num = findPrime(sum); // Return difference of // sum and num return num - sum; } // Driver Code public static void main(String[] args) { int arr[] = { 2 , 4 , 6 , 8 , 12 }; int n = arr.length; System.out.println(minNumber(arr, n)); } } // This code is contributed by mits |
Python3
# Python3 program to find minimum number to # insert in array so their sum is prime isPrime = [ 1 ] * 100005 # function to calculate prime # using sieve of eratosthenes def sieveOfEratostheneses(): isPrime[ 1 ] = False i = 2 while i * i < 100005 : if (isPrime[i]): j = 2 * i while j < 100005 : isPrime[j] = False j + = i i + = 1 return # Find prime number # greater than a number def findPrime(n): num = n + 1 # find prime greater than n while (num): # check if num is prime if isPrime[num]: return num # Increment num num + = 1 return 0 # To find number to be added # so sum of array is prime def minNumber(arr): # call sieveOfEratostheneses to # calculate primes sieveOfEratostheneses() s = 0 # To find sum of array elements for i in range ( 0 , len (arr)): s + = arr[i] # If sum is already prime # return 0 if isPrime[s] = = True : return 0 # To find prime number # greater than sum num = findPrime(s) # Return difference of # sum and num return num - s # Driver code arr = [ 2 , 4 , 6 , 8 , 12 ] print (minNumber(arr)) # This code is contributed by Sachin Bisht |
C#
// C# program to find minimum number to // insert in array so their sum is prime class GFG { static int MAX = 100005; // Array to store primes static bool [] isPrime = new bool [MAX]; // function to calculate primes // using sieve of eratosthenes static void sieveOfEratostheneses() { isPrime[1] = true ; for ( int i = 2; i * i < MAX; i++) { if (!isPrime[i]) { for ( int j = 2 * i; j < MAX; j += i) isPrime[j] = true ; } } } // Find prime number greater // than a number static int findPrime( int n) { int num = n + 1; // To return prime number // greater than n while (num > 0) { // check if num is prime if (!isPrime[num]) return num; // increment num num = num + 1; } return 0; } // To find number to be added // so sum of array is prime static int minNumber( int [] arr, int n) { // call sieveOfEratostheneses // to calculate primes sieveOfEratostheneses(); int sum = 0; // To find sum of array elements for ( int i = 0; i < n; i++) sum += arr[i]; if (!isPrime[sum]) return 0; // To find prime number // greater then sum int num = findPrime(sum); // Return difference of // sum and num return num - sum; } // Driver Code public static void Main() { int [] arr = { 2, 4, 6, 8, 12 }; int n = arr.Length; System.Console.WriteLine(minNumber(arr, n)); } } // This code is contributed by mits |
PHP
<?php // PHP program to find minimum number to // insert in array so their sum is prime $MAX =100005; // function to calculate primes // using sieve of eratosthenes function sieveOfEratostheneses() { $isPrime = array_fill (true, $MAX , NULL); $isPrime [1] = false; for ( $i = 2; $i * $i < $MAX ; $i ++) { if ( $isPrime [ $i ]) { for ( $j = 2 * $i ; $j < $MAX ; $j += $i ) $isPrime [ $j ] = false; } } } // Find prime number // greater than a number function findPrime( $n ) { $num = $n + 1; // To return prime number // greater than n while ( $num ) { // check if num is prime if ( $isPrime [ $num ]) return $num ; // increment num $num = $num + 1; } return 0; } // To find number to be added // so sum of array is prime function minNumber(& $arr , $n ) { // call sieveOfEratostheneses // to calculate primes sieveOfEratostheneses(); $sum = 0; // To find sum of array elements for ( $i = 0; $i < $n ; $i ++) $sum += $arr [ $i ]; if ( $isPrime [ $sum ]) return 0; // To find prime number // greater then sum $num = findPrime( $sum ); // Return difference of // sum and num return $num - $sum ; } // Driver Code $arr = array ( 2, 4, 6, 8, 12 ); $n = sizeof( $arr ) / sizeof( $arr [0]); echo minNumber( $arr , $n ); return 0; ?> |
Javascript
<script> // Javascript program to find minimum number to // insert in array so their sum is prime let MAX = 100005; // Array to store primes let isPrime = new Array(MAX).fill(0); // function to calculate primes // using sieve of eratosthenes function sieveOfEratostheneses() { isPrime[1] = true ; for (let i = 2; i * i < MAX; i++) { if (!isPrime[i]) { for (let j = 2 * i; j < MAX; j += i) isPrime[j] = true ; } } } // Find prime number greater // than a number function findPrime(n) { let num = n + 1; // To return prime number // greater than n while (num > 0) { // check if num is prime if (!isPrime[num]) return num; // increment num num = num + 1; } return 0; } // To find number to be added // so sum of array is prime function minNumber(arr, n) { // call sieveOfEratostheneses // to calculate primes sieveOfEratostheneses(); let sum = 0; // To find sum of array elements for (let i = 0; i < n; i++) sum += arr[i]; if (!isPrime[sum]) return 0; // To find prime number // greater then sum let num = findPrime(sum); // Return difference of // sum and num return num - sum; } // driver program let arr = [ 2, 4, 6, 8, 12 ]; let n = arr.length; document.write(minNumber(arr, n)); // This code is contributed by code_hunt. </script> |
5
Time Complexity: O(N log(log N))
This article is contributed by nuclode. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!