Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIHuffman Decoding

Huffman Decoding

We have discussed Huffman Encoding in a previous post. In this post, decoding is discussed. 

Examples:

Input Data: AAAAAABCCCCCCDDEEEEE
Frequencies: A: 6, B: 1, C: 6, D: 2, E: 5

Encoded Data: 0000000000001100101010101011111111010101010

Huffman Tree: ‘#’ is the special character usedfor internal nodes as character field
                         is not needed for internal nodes. 

                    #(20)
                  /       \
          #(12)         #(8)
         /      \        /     \
     A(6)     C(6) E(5)     #(3)
                                 /     \
                             B(1)    D(2)  

Code of ‘A’ is ’00’, code of ‘C’ is ’01’, ..

Decoded Data: AAAAAABCCCCCCDDEEEEE

Input Data: neveropen

Character With there Frequencies
e 10, f 1100, g 011, k 00, o 010, r 1101, s 111

Encoded Huffman data: 01110100011111000101101011101000111
Decoded Huffman Data: neveropen

Recommended Practice

Follow the below steps to solve the problem:

Note: To decode the encoded data we require the Huffman tree. We iterate through the binary encoded data. To find character corresponding to current bits, we use the following simple steps:

  • We start from the root and do the following until a leaf is found.
  • If the current bit is 0, we move to the left node of the tree.
  • If the bit is 1, we move to right node of the tree.
  • If during the traversal, we encounter a leaf node, we print the character of that particular leaf node and then again continue the iteration of the encoded data starting from step 1.

The below code takes a string as input, encodes it, and saves it in a variable encoded string. Then it decodes it and prints the original string. 

Below is the implementation of the above approach:

CPP




// C++ program to encode and decode a string using
// Huffman Coding.
#include <bits/stdc++.h>
#define MAX_TREE_HT 256
using namespace std;
 
// to map each character its huffman value
map<char, string> codes;
 
// To store the frequency of character of the input data
map<char, int> freq;
 
// A Huffman tree node
struct MinHeapNode {
    char data; // One of the input characters
    int freq; // Frequency of the character
    MinHeapNode *left, *right; // Left and right child
 
    MinHeapNode(char data, int freq)
    {
        left = right = NULL;
        this->data = data;
        this->freq = freq;
    }
};
 
// utility function for the priority queue
struct compare {
    bool operator()(MinHeapNode* l, MinHeapNode* r)
    {
        return (l->freq > r->freq);
    }
};
 
// utility function to print characters along with
// there huffman value
void printCodes(struct MinHeapNode* root, string str)
{
    if (!root)
        return;
    if (root->data != '$')
        cout << root->data << ": " << str << "\n";
    printCodes(root->left, str + "0");
    printCodes(root->right, str + "1");
}
 
// utility function to store characters along with
// there huffman value in a hash table, here we
// have C++ STL map
void storeCodes(struct MinHeapNode* root, string str)
{
    if (root == NULL)
        return;
    if (root->data != '$')
        codes[root->data] = str;
    storeCodes(root->left, str + "0");
    storeCodes(root->right, str + "1");
}
 
// STL priority queue to store heap tree, with respect
// to their heap root node value
priority_queue<MinHeapNode*, vector<MinHeapNode*>, compare>
    minHeap;
 
// function to build the Huffman tree and store it
// in minHeap
void HuffmanCodes(int size)
{
    struct MinHeapNode *left, *right, *top;
    for (map<char, int>::iterator v = freq.begin();
         v != freq.end(); v++)
        minHeap.push(new MinHeapNode(v->first, v->second));
    while (minHeap.size() != 1) {
        left = minHeap.top();
        minHeap.pop();
        right = minHeap.top();
        minHeap.pop();
        top = new MinHeapNode('$',
                              left->freq + right->freq);
        top->left = left;
        top->right = right;
        minHeap.push(top);
    }
    storeCodes(minHeap.top(), "");
}
 
// utility function to store map each character with its
// frequency in input string
void calcFreq(string str, int n)
{
    for (int i = 0; i < str.size(); i++)
        freq[str[i]]++;
}
 
// function iterates through the encoded string s
// if s[i]=='1' then move to node->right
// if s[i]=='0' then move to node->left
// if leaf node append the node->data to our output string
string decode_file(struct MinHeapNode* root, string s)
{
    string ans = "";
    struct MinHeapNode* curr = root;
    for (int i = 0; i < s.size(); i++) {
        if (s[i] == '0')
            curr = curr->left;
        else
            curr = curr->right;
 
        // reached leaf node
        if (curr->left == NULL and curr->right == NULL) {
            ans += curr->data;
            curr = root;
        }
    }
    // cout<<ans<<endl;
    return ans + '\0';
}
 
// Driver code
int main()
{
    string str = "neveropen";
    string encodedString, decodedString;
    calcFreq(str, str.length());
    HuffmanCodes(str.length());
    cout << "Character With there Frequencies:\n";
    for (auto v = codes.begin(); v != codes.end(); v++)
        cout << v->first << ' ' << v->second << endl;
 
    for (auto i : str)
        encodedString += codes[i];
 
    cout << "\nEncoded Huffman data:\n"
         << encodedString << endl;
 
      // Function call
    decodedString
        = decode_file(minHeap.top(), encodedString);
    cout << "\nDecoded Huffman Data:\n"
         << decodedString << endl;
    return 0;
}


Java




// Java program to encode and decode a string using
// Huffman Coding.
import java.util.*;
import java.util.Map.Entry;
 
public class HuffmanCoding {
     
    private static Map<Character, String> codes = new HashMap<>();
    private static Map<Character, Integer> freq = new HashMap<>();
    private static PriorityQueue<MinHeapNode> minHeap = new PriorityQueue<>();
     
    public static void main(String[] args) {
        String str = "neveropen";
        String encodedString = "";
        String decodedString = "";
        calcFreq(str);
        HuffmanCodes(str.length());
        System.out.println("Character With their Frequencies:");
        for (Entry<Character, String> entry : codes.entrySet()) {
            System.out.println(entry.getKey() + " " + entry.getValue());
        }
        for (char c : str.toCharArray()) {
            encodedString += codes.get(c);
        }
        System.out.println("\nEncoded Huffman data:");
        System.out.println(encodedString);
        decodedString = decodeFile(minHeap.peek(), encodedString);
        System.out.println("\nDecoded Huffman Data:");
        System.out.println(decodedString);
    }
     
    private static void HuffmanCodes(int size) {
        for (Entry<Character, Integer> entry : freq.entrySet()) {
            minHeap.add(new MinHeapNode(entry.getKey(), entry.getValue()));
        }
        while (minHeap.size() != 1) {
            MinHeapNode left = minHeap.poll();
            MinHeapNode right = minHeap.poll();
            MinHeapNode top = new MinHeapNode('$', left.freq + right.freq);
            top.left = left;
            top.right = right;
            minHeap.add(top);
        }
        storeCodes(minHeap.peek(), "");
    }
     
    private static void calcFreq(String str) {
        for (char c : str.toCharArray()) {
            freq.put(c, freq.getOrDefault(c, 0) + 1);
        }
    }
     
    private static void storeCodes(MinHeapNode root, String str) {
        if (root == null) {
            return;
        }
        if (root.data != '$') {
            codes.put(root.data, str);
        }
        storeCodes(root.left, str + "0");
        storeCodes(root.right, str + "1");
    }
     
    private static String decodeFile(MinHeapNode root, String s) {
        String ans = "";
        MinHeapNode curr = root;
        int n = s.length();
        for (int i = 0; i < n; i++) {
            if (s.charAt(i) == '0') {
                curr = curr.left;
            } else {
                curr = curr.right;
            }
            if (curr.left == null && curr.right == null) {
                ans += curr.data;
                curr = root;
            }
        }
        return ans + '\0';
    }
     
}
 
class MinHeapNode implements Comparable<MinHeapNode> {
    char data;
    int freq;
    MinHeapNode left, right;
     
    MinHeapNode(char data, int freq) {
        this.data = data;
        this.freq = freq;
    }
     
    public int compareTo(MinHeapNode other) {
        return this.freq - other.freq;
    }
}
 
//This code is contributed by NarasingaNikhil


Python3




import heapq
from collections import defaultdict
 
# to map each character its huffman value
codes = {}
 
# To store the frequency of character of the input data
freq = defaultdict(int)
 
# A Huffman tree node
class MinHeapNode:
    def __init__(self, data, freq):
        self.left = None
        self.right = None
        self.data = data
        self.freq = freq
 
    def __lt__(self, other):
        return self.freq < other.freq
 
# utility function to print characters along with
# there huffman value
def printCodes(root, str):
    if root is None:
        return
    if root.data != '$':
        print(root.data, ":", str)
    printCodes(root.left, str + "0")
    printCodes(root.right, str + "1")
 
# utility function to store characters along with
# there huffman value in a hash table
def storeCodes(root, str):
    if root is None:
        return
    if root.data != '$':
        codes[root.data] = str
    storeCodes(root.left, str + "0")
    storeCodes(root.right, str + "1")
 
# function to build the Huffman tree and store it
# in minHeap
def HuffmanCodes(size):
    global minHeap
    for key in freq:
        minHeap.append(MinHeapNode(key, freq[key]))
    heapq.heapify(minHeap)
    while len(minHeap) != 1:
        left = heapq.heappop(minHeap)
        right = heapq.heappop(minHeap)
        top = MinHeapNode('$', left.freq + right.freq)
        top.left = left
        top.right = right
        heapq.heappush(minHeap, top)
    storeCodes(minHeap[0], "")
 
# utility function to store map each character with its
# frequency in input string
def calcFreq(str, n):
    for i in range(n):
        freq[str[i]] += 1
 
# function iterates through the encoded string s
# if s[i]=='1' then move to node->right
# if s[i]=='0' then move to node->left
# if leaf node append the node->data to our output string
def decode_file(root, s):
    ans = ""
    curr = root
    n = len(s)
    for i in range(n):
        if s[i] == '0':
            curr = curr.left
        else:
            curr = curr.right
 
        # reached leaf node
        if curr.left is None and curr.right is None:
            ans += curr.data
            curr = root
    return ans + '\0'
 
# Driver code
if __name__ == "__main__":
    minHeap = []
    str = "neveropen"
    encodedString, decodedString = "", ""
    calcFreq(str, len(str))
    HuffmanCodes(len(str))
    print("Character With there Frequencies:")
    for key in sorted(codes):
        print(key, codes[key])
 
    for i in str:
        encodedString += codes[i]
 
    print("\nEncoded Huffman data:")
    print(encodedString)
 
    # Function call
    decodedString = decode_file(minHeap[0], encodedString)
    print("\nDecoded Huffman Data:")
    print(decodedString)


Javascript




// To map each character its huffman value
let codes = {};
 
// To store the frequency of character of the input data
let freq = {};
 
// A Huffman tree node
class MinHeapNode {
    constructor(data, freq) {
        this.left = null;
        this.right = null;
        this.data = data;
        this.freq = freq;
    }
 
    // Define the comparison method for sorting the nodes in the heap
    compareTo(other) {
        return this.freq - other.freq;
    }
}
 
// Create an empty min-heap
let minHeap = [];
 
// Utility function to print characters along with their huffman value
function printCodes(root, str) {
    if (!root) {
        return;
    }
    if (root.data !== "$") {
        console.log(root.data + " : " + str);
    }
    printCodes(root.left, str + "0");
    printCodes(root.right, str + "1");
}
 
// Utility function to store characters along with their huffman value in a hash table
function storeCodes(root, str) {
    if (!root) {
        return;
    }
    if (root.data !== "$") {
        codes[root.data] = str;
    }
    storeCodes(root.left, str + "0");
    storeCodes(root.right, str + "1");
}
 
// Function to build the Huffman tree and store it in minHeap
function HuffmanCodes(size) {
    for (let key in freq) {
        minHeap.push(new MinHeapNode(key, freq[key]));
    }
    // Convert the array to a min-heap using the built-in sort method
    minHeap.sort((a, b) => a.compareTo(b));
    while (minHeap.length !== 1) {
        let left = minHeap.shift();
        let right = minHeap.shift();
        let top = new MinHeapNode("$", left.freq + right.freq);
        top.left = left;
        top.right = right;
        minHeap.push(top);
        // Sort the array to maintain the min-heap property
        minHeap.sort((a, b) => a.compareTo(b));
    }
    storeCodes(minHeap[0], "");
}
 
// Utility function to store map each character with its frequency in input string
function calcFreq(str) {
    for (let i = 0; i < str.length; i++) {
        let char = str.charAt(i);
        if (freq[char]) {
            freq[char]++;
        } else {
            freq[char] = 1;
        }
    }
}
 
// Function iterates through the encoded string s
// If s[i] == '1' then move to node.right
// If s[i] == '0' then move to node.left
// If leaf node, append the node.data to our output string
function decode_file(root, s) {
    let ans = "";
    let curr = root;
    let n = s.length;
    for (let i = 0; i < n; i++) {
        if (s.charAt(i) == "0") {
            curr = curr.left;
        } else {
            curr = curr.right;
        }
 
        // Reached leaf node
        if (!curr.left && !curr.right) {
            ans += curr.data;
            curr = root;
        }
    }
    return ans + "\0";
}
 
// Driver code
let str = "neveropen";
let encodedString = "";
let decodedString = "";
calcFreq(str);
HuffmanCodes(str.length);
console.log("Character With their Frequencies:")
let keys = Array.from(Object.keys(codes))
keys.sort()
for (var key of keys)
    console.log(key, codes[key])
 
for (var i of str)
    encodedString += codes[i]
 
console.log("\nEncoded Huffman data:")
console.log(encodedString)
 
// Function call
decodedString = decode_file(minHeap[0], encodedString)
console.log("\nDecoded Huffman Data:")
console.log(decodedString)


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
namespace HuffmanEncoding
{
    // To store the frequency of character of the input data
    class FrequencyTable
    {
        private readonly Dictionary<char, int> _freq = new Dictionary<char, int>();
 
        public void Add(char c)
        {
            if (_freq.ContainsKey(c))
            {
                _freq++;
            }
            else
            {
                _freq = 1;
            }
        }
 
        public Dictionary<char, int> ToDictionary()
        {
            return _freq;
        }
    }
 
    // A Huffman tree node
    class HuffmanNode : IComparable<HuffmanNode>
    {
        public HuffmanNode Left { get; set; }
        public HuffmanNode Right { get; set; }
        public char Data { get; set; }
        public int Frequency { get; set; }
 
        public HuffmanNode(char data, int freq)
        {
            Data = data;
            Frequency = freq;
        }
 
        // Define the comparison method for sorting the nodes in the heap
        public int CompareTo(HuffmanNode other)
        {
            return Frequency - other.Frequency;
        }
    }
 
    // Utility class for creating Huffman codes
    class HuffmanEncoder
    {
        // To map each character its Huffman value
        private readonly Dictionary<char, string> _codes = new Dictionary<char, string>();
 
        // Create an empty min-heap
        private readonly List<HuffmanNode> _minHeap = new List<HuffmanNode>();
 
        // Function to build the Huffman tree and store it in minHeap
        private void BuildHuffmanTree(Dictionary<char, int> freq)
        {
            foreach (var kvp in freq)
            {
                _minHeap.Add(new HuffmanNode(kvp.Key, kvp.Value));
            }
            // Convert the list to a min-heap using the built-in sort method
            _minHeap.Sort();
            while (_minHeap.Count > 1)
            {
                var left = _minHeap.First();
                _minHeap.RemoveAt(0);
                var right = _minHeap.First();
                _minHeap.RemoveAt(0);
                var top = new HuffmanNode('$', left.Frequency + right.Frequency);
                top.Left = left;
                top.Right = right;
                _minHeap.Add(top);
                // Sort the list to maintain the min-heap property
                _minHeap.Sort();
            }
        }
 
        // Utility function to store characters along with their Huffman value in a hash table
        private void StoreCodes(HuffmanNode root, string str)
        {
            if (root == null)
            {
                return;
            }
            if (root.Data != '$')
            {
                _codes[root.Data] = str;
            }
            StoreCodes(root.Left, str + "0");
            StoreCodes(root.Right, str + "1");
        }
 
        // Utility function to print characters along with their Huffman value
        public void PrintCodes(HuffmanNode root, string str)
        {
            if (root == null)
            {
                return;
            }
            if (root.Data != '$')
            {
                Console.WriteLine(root.Data + " : " + str);
            }
            PrintCodes(root.Left, str + "0");
            PrintCodes(root.Right, str + "1");
        }
 
        // Function iterates through the encoded string s
        // If s[i] == '1' then move to node.right
        // If s[i] == '0' then move to node.left
        // If leaf node, append the node.data to our output string
        public string DecodeFile(HuffmanNode root, string s)
        {
            
            string ans = "";
            HuffmanNode curr = root;
            int n = s.Length;
            for (int i = 0; i < n; i++)
            {
                if (s[i] == '0')
                {
                    curr = curr.Left;
                }
                else
                {
                    curr = curr.Right;
                }
 
                // Reached leaf node
                if (curr.Left == null && curr.Right == null)
                {
                    ans += curr.Data;
                    curr = root;
                }
            }
            return ans + "\0";
        }
 
        // Function to build the Huffman tree and store it in minHeap
        public void BuildCodes(Dictionary<char, int> freq)
        {
            BuildHuffmanTree(freq);
            StoreCodes(_minHeap.First(), "");
        }
 
        public Dictionary<char, string> GetCodes()
        {
            return _codes;
        }
 
        public HuffmanNode GetRoot()
        {
            return _minHeap.First();
        }
    }
 
    class Program
    {
        static void Main(string[] args)
        {
            // Driver code
            string str = "neveropen";
            string encodedString = "";
            string decodedString;
            var freqTable = new FrequencyTable();
            foreach (char c in str)
            {
                freqTable.Add(c);
            }
            var huffmanEncoder = new HuffmanEncoder();
            huffmanEncoder.BuildCodes(freqTable.ToDictionary());
            Console.WriteLine("Character With their Frequencies:");
            foreach (var kvp in huffmanEncoder.GetCodes())
            {
                Console.WriteLine($"{kvp.Key} : {kvp.Value}");
            }
 
            foreach (char c in str)
            {
                encodedString += huffmanEncoder.GetCodes();
            }
 
            Console.WriteLine("\nEncoded Huffman data:");
            Console.WriteLine(encodedString);
 
            // Function call
            decodedString = huffmanEncoder.DecodeFile(huffmanEncoder.GetRoot(), encodedString);
            Console.WriteLine("\nDecoded Huffman Data:");
            Console.WriteLine(decodedString);
        }
    }
}


Output

Character With there Frequencies:
e 10
f 1100
g 011
k 00
o 010
r 1101
s 111

Encoded Huffman data:
01110100011111000101101011101000111

Decoded Huffman Data:
neveropen

Time complexity:

Time complexity of the Huffman coding algorithm is O(n log n), where n is the number of characters in the input string. The auxiliary space complexity is also O(n), where n is the number of characters in the input string.

In the given C++ implementation, the time complexity is dominated by the creation of the Huffman tree using the priority queue, which takes O(n log n) time. The space complexity is dominated by the maps used to store the frequency and codes of characters, which take O(n) space. The recursive functions used to print codes and store codes also contribute to the space complexity.

Comparing Input file size and Output file size: 

Comparing the input file size and the Huffman encoded output file. We can calculate the size of the output data in a simple way. Let’s say our input is a string “neveropen” and is stored in a file input.txt. 

Input File Size:

Input: “neveropen”
Total number of character i.e. input length: 13
Size: 13 character occurrences * 8 bits = 104 bits or 13 bytes.

Output File Size:

Input: “neveropen”

————————————————
Character |  Frequency |  Binary Huffman Value |
————————————————

   e      |      4     |         10              |
   f       |      1     |         1100          |   
   g      |      2     |         011            |
   k      |      2     |         00              |
   o      |      1     |         010            |
   r       |      1     |         1101          |
   s       |      2     |         111            | 

————————————————

So to calculate output size:

e: 4 occurrences * 2 bits = 8 bits
f: 1 occurrence  * 4 bits = 4 bits
g: 2 occurrences * 3 bits = 6 bits
k: 2 occurrences * 2 bits = 4 bits
o: 1 occurrence  * 3 bits = 3 bits
r: 1 occurrence  * 4 bits = 4 bits
s: 2 occurrences * 3 bits = 6 bits

Total Sum: 35 bits approx 5 bytes

Hence, we could see that after encoding the data we saved a large amount of data. The above method can also help us to determine the value of N i.e. the length of the encoded data. 

This article is contributed by Harshit Sidhwa. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments