Given a number ‘n’ and a prime number ‘p’. We need to find out the power of ‘p’ in the prime factorization of n!
Examples:
Input : n = 4, p = 2 Output : 3 Power of 2 in the prime factorization of 2 in 4! = 24 is 3 Input : n = 24, p = 2 Output : 22
Naive approach
The naive approach is to find the power of p in each number from 1 to n and add them. Because we know that during multiplication power is added.
C++
// C++ implementation of finding // power of p in n! #include <bits/stdc++.h> using namespace std; // Returns power of p in n! int PowerOFPINnfactorial( int n, int p) { // initializing answer int ans = 0; // initializing int temp = p; // loop until temp<=n while (temp <= n) { // add number of numbers divisible by temp ans += n / temp; // each time multiply temp by p temp = temp * p; } return ans; } // Driver function int main() { cout << PowerOFPINnfactorial(4, 2) << endl; return 0; } |
Java
// Java implementation of naive approach public class GFG { // Method to calculate the power of prime number p in n! static int PowerOFPINnfactorial( int n, int p) { // initializing answer int ans = 0 ; // finding power of p from 1 to n for ( int i = 1 ; i <= n; i++) { // variable to note the power of p in i int count = 0 , temp = i; // loop until temp is equal to i while (temp % p == 0 ) { count++; temp = temp / p; } // adding count to i ans += count; } return ans; } // Driver Method public static void main(String[] args) { System.out.println(PowerOFPINnfactorial( 4 , 2 )); } } |
Python3
# Python3 implementation of # finding power of p in n! # Returns power of p in n! def PowerOFPINnfactorial(n, p): # initializing answer ans = 0 ; # initializing temp = p; # loop until temp<=n while (temp < = n): # add number of numbers # divisible by n ans + = n / temp; # each time multiply # temp by p temp = temp * p; return ans; # Driver Code print (PowerOFPINnfactorial( 4 , 2 )); # This code is contributed by # mits |
C#
// C# implementation of naive approach using System; public class GFG { // Method to calculate power // of prime number p in n! static int PowerOFPINnfactorial( int n, int p) { // initializing answer int ans = 0; // finding power of p from 1 to n for ( int i = 1; i <= n; i++) { // variable to note the power of p in i int count = 0, temp = i; // loop until temp is equal to i while (temp % p == 0) { count++; temp = temp / p; } // adding count to i ans += count; } return ans; } // Driver Code public static void Main(String []args) { Console.WriteLine(PowerOFPINnfactorial(4, 2)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP implementation of // finding power of p in n! // Returns power of p in n! function PowerOFPINnfactorial( $n , $p ) { // initializing answer $ans = 0; // initializing $temp = $p ; // loop until temp<=n while ( $temp <= $n ) { // add number of numbers // divisible by n $ans += $n / $temp ; // each time multiply // temp by p $temp = $temp * $p ; } return $ans ; } // Driver Code echo PowerOFPINnfactorial(4, 2) . "\n" ; // This code is contributed by // Akanksha Rai(Abby_akku) ?> |
Javascript
<script> // Javascript implementation of // finding power of p in n! // Returns power of p in n! function PowerOFPINnfactorial(n, p) { // initializing answer let ans = 0; // initializing let temp = p; // loop until temp<=n while (temp <= n) { // add number of numbers // divisible by n ans += n / temp; // each time multiply // temp by p temp = temp * p; } return ans; } // Driver Code document.write(PowerOFPINnfactorial(4, 2)); // This code is contributed by _saurabh_jaiswal </script> |
Kotlin
//function to find the power of p in n! in Kotlin fun PowerOFPINnfactorial(n: Int, p: Int) { // initializing answer var ans = 0 ; // initializing var temp = p; // loop until temp<=n while (temp<=n) { // add number of numbers divisible by temp ans+=n/temp; // each time multiply temp by p temp*=p; } println(ans) } //Driver Code fun main(args: Array<String>) { val n = 4 val p = 2 PowerOFPINnfactorial(n,p) } |
Output:
3
Time Complexity: O(logpn)
Auxiliary Space: O(1)
Efficient Approach
Before discussing efficient approach lets discuss a question given a two numbers n, m how many numbers are there from 1 to n that are divisible by m the answer is floor(n/m).
Now coming back to our original question to find the power of p in n! what we do is count the number of numbers from 1 to n that are divisible by p then by then by till > n and add them. This will be our required answer.
Powerofp(n!) = floor(n/p) + floor(n/p^2) + floor(n/p^3)........
Below is the implementation of the above steps.
C++
// C++ implementation of finding power of p in n! #include <bits/stdc++.h> using namespace std; // Returns power of p in n! int PowerOFPINnfactorial( int n, int p) { // initializing answer int ans = 0; // initializing int temp = p; // loop until temp<=n while (temp <= n) { // add number of numbers divisible by temp ans += n / temp; // each time multiply temp by p temp = temp * p; } return ans; } // Driver function int main() { cout << PowerOFPINnfactorial(4, 2) << endl; return 0; } |
Java
// Java implementation of finding power of p in n! public class GFG { // Method to calculate the power of prime number p in n! static int PowerOFPINnfactorial( int n, int p) { // initializing answer int ans = 0 ; // initializing int temp = p; // loop until temp<=n while (temp <= n) { // add number of numbers divisible by n ans += n / temp; // each time multiply temp by p temp = temp * p; } return ans; } // Driver Method public static void main(String[] args) { System.out.println(PowerOFPINnfactorial( 4 , 2 )); } } |
Python3
# Python3 implementation of # finding power of p in n! # Returns power of p in n! def PowerOFPINnfactorial(n, p): # initializing answer ans = 0 # initializing temp = p # loop until temp<=n while (temp < = n) : # add number of numbers # divisible by n ans + = n / temp # each time multiply # temp by p temp = temp * p return int (ans) # Driver Code print (PowerOFPINnfactorial( 4 , 2 )) # This code is contributed # by Smitha |
C#
// C# implementation of finding // power of p in n! using System; public class GFG { // Method to calculate power // of prime number p in n! static int PowerOFPINnfactorial( int n, int p) { // initializing answer int ans = 0; // initializing int temp = p; // loop until temp <= n while (temp <= n) { // add number of numbers divisible by n ans += n / temp; // each time multiply temp by p temp = temp * p; } return ans; } // Driver Code public static void Main(String []args) { Console.WriteLine(PowerOFPINnfactorial(4, 2)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP implementation of // finding power of p in n! // Returns power of p in n! function PowerOFPINnfactorial( $n , $p ) { // initializing answer $ans = 0; // initializing $temp = $p ; // loop until temp<=n while ( $temp <= $n ) { // add number of numbers divisible by n $ans += $n / $temp ; // each time multiply temp by p $temp = $temp * $p ; } return $ans ; } // Driver function echo PowerOFPINnfactorial(4, 2) . "\n" ; // This code is contributed // by Akanksha Rai(Abby_akku) ?> |
Javascript
<script> // Javascript implementation of // finding power of p in n! // Returns power of p in n! function PowerOFPINnfactorial(n, p) { // initializing answer let ans = 0; // initializing let temp = p; // loop until temp<=n while (temp <= n) { // add number of numbers divisible by n ans += n / temp; // each time multiply temp by p temp = temp * p; } return ans; } // Driver function document.write(PowerOFPINnfactorial(4, 2)); // This code is contributed by _saurabh_jaiswal </script> |
Kotlin
//function to find the power of p in n! in Kotlin fun PowerOFPINnfactorial(n: Int, p: Int) { // initializing answer var ans = 0 ; // initializing var temp = p; // loop until temp<=n while (temp<=n) { // add number of numbers divisible by temp ans+=n/temp; // each time multiply temp by p temp*=p; } println(ans) } //Driver Code fun main(args: Array<String>) { val n = 4 val p = 2 PowerOFPINnfactorial(n,p) } |
Output:
3
Time Complexity :O((n))
Auxiliary Space: O(1)
This article is contributed by Aarti_Rathi and Ayush Jha. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!