Prerequisites: Minimax Algorithm in Game Theory, Evaluation Function in Game Theory
Let us combine what we have learnt so far about minimax and evaluation function to write a proper Tic-Tac-Toe AI (Artificial Intelligence) that plays a perfect game. This AI will consider all possible scenarios and makes the most optimal move.
Finding the Best Move :
We shall be introducing a new function called findBestMove(). This function evaluates all the available moves using minimax() and then returns the best move the maximizer can make. The pseudocode is as follows :
function findBestMove(board): bestMove = NULL for each move in board : if current move is better than bestMove bestMove = current move return bestMove
Minimax :
To check whether or not the current move is better than the best move we take the help of minimax() function which will consider all the possible ways the game can go and returns the best value for that move, assuming the opponent also plays optimally
The code for the maximizer and minimizer in the minimax() function is similar to findBestMove(), the only difference is, instead of returning a move, it will return a value. Here is the pseudocode :
function minimax(board, depth, isMaximizingPlayer): if current board state is a terminal state : return value of the board if isMaximizingPlayer : bestVal = -INFINITY for each move in board : value = minimax(board, depth+1, false) bestVal = max( bestVal, value) return bestVal else : bestVal = +INFINITY for each move in board : value = minimax(board, depth+1, true) bestVal = min( bestVal, value) return bestVal
Checking for GameOver state :
To check whether the game is over and to make sure there are no moves left we use isMovesLeft() function. It is a simple straightforward function which checks whether a move is available or not and returns true or false respectively. Pseudocode is as follows :
function isMovesLeft(board): for each cell in board: if current cell is empty: return true return false
Making our AI smarter :
One final step is to make our AI a little bit smarter. Even though the following AI plays perfectly, it might choose to make a move which will result in a slower victory or a faster loss. Lets take an example and explain it.
Assume that there are 2 possible ways for X to win the game from a given board state.
- Move A : X can win in 2 move
- Move B : X can win in 4 moves
Our evaluation function will return a value of +10 for both moves A and B. Even though the move A is better because it ensures a faster victory, our AI may choose B sometimes. To overcome this problem we subtract the depth value from the evaluated score. This means that in case of a victory it will choose a the victory which takes least number of moves and in case of a loss it will try to prolong the game and play as many moves as possible. So the new evaluated value will be
- Move A will have a value of +10 – 2 = 8
- Move B will have a value of +10 – 4 = 6
Now since move A has a higher score compared to move B our AI will choose move A over move B. The same thing must be applied to the minimizer. Instead of subtracting the depth we add the depth value as the minimizer always tries to get, as negative a value as possible. We can subtract the depth either inside the evaluation function or outside it. Anywhere is fine. I have chosen to do it outside the function. Pseudocode implementation is as follows.
if maximizer has won: return WIN_SCORE – depth else if minimizer has won: return LOOSE_SCORE + depth
Below is implementation of above idea.
C++
// C++ program to find the next optimal move for // a player #include<bits/stdc++.h> using namespace std; struct Move { int row, col; }; char player = 'x' , opponent = 'o' ; // This function returns true if there are moves // remaining on the board. It returns false if // there are no moves left to play. bool isMovesLeft( char board[3][3]) { for ( int i = 0; i<3; i++) for ( int j = 0; j<3; j++) if (board[i][j]== '_' ) return true ; return false ; } // This is the evaluation function as discussed // in the previous article ( http://goo.gl/sJgv68 ) int evaluate( char b[3][3]) { // Checking for Rows for X or O victory. for ( int row = 0; row<3; row++) { if (b[row][0]==b[row][1] && b[row][1]==b[row][2]) { if (b[row][0]==player) return +10; else if (b[row][0]==opponent) return -10; } } // Checking for Columns for X or O victory. for ( int col = 0; col<3; col++) { if (b[0][col]==b[1][col] && b[1][col]==b[2][col]) { if (b[0][col]==player) return +10; else if (b[0][col]==opponent) return -10; } } // Checking for Diagonals for X or O victory. if (b[0][0]==b[1][1] && b[1][1]==b[2][2]) { if (b[0][0]==player) return +10; else if (b[0][0]==opponent) return -10; } if (b[0][2]==b[1][1] && b[1][1]==b[2][0]) { if (b[0][2]==player) return +10; else if (b[0][2]==opponent) return -10; } // Else if none of them have won then return 0 return 0; } // This is the minimax function. It considers all // the possible ways the game can go and returns // the value of the board int minimax( char board[3][3], int depth, bool isMax) { int score = evaluate(board); // If Maximizer has won the game return his/her // evaluated score if (score == 10) return score; // If Minimizer has won the game return his/her // evaluated score if (score == -10) return score; // If there are no more moves and no winner then // it is a tie if (isMovesLeft(board)== false ) return 0; // If this maximizer's move if (isMax) { int best = -1000; // Traverse all cells for ( int i = 0; i<3; i++) { for ( int j = 0; j<3; j++) { // Check if cell is empty if (board[i][j]== '_' ) { // Make the move board[i][j] = player; // Call minimax recursively and choose // the maximum value best = max( best, minimax(board, depth+1, !isMax) ); // Undo the move board[i][j] = '_' ; } } } return best; } // If this minimizer's move else { int best = 1000; // Traverse all cells for ( int i = 0; i<3; i++) { for ( int j = 0; j<3; j++) { // Check if cell is empty if (board[i][j]== '_' ) { // Make the move board[i][j] = opponent; // Call minimax recursively and choose // the minimum value best = min(best, minimax(board, depth+1, !isMax)); // Undo the move board[i][j] = '_' ; } } } return best; } } // This will return the best possible move for the player Move findBestMove( char board[3][3]) { int bestVal = -1000; Move bestMove; bestMove.row = -1; bestMove.col = -1; // Traverse all cells, evaluate minimax function for // all empty cells. And return the cell with optimal // value. for ( int i = 0; i<3; i++) { for ( int j = 0; j<3; j++) { // Check if cell is empty if (board[i][j]== '_' ) { // Make the move board[i][j] = player; // compute evaluation function for this // move. int moveVal = minimax(board, 0, false ); // Undo the move board[i][j] = '_' ; // If the value of the current move is // more than the best value, then update // best/ if (moveVal > bestVal) { bestMove.row = i; bestMove.col = j; bestVal = moveVal; } } } } printf ( "The value of the best Move is : %d\n\n" , bestVal); return bestMove; } // Driver code int main() { char board[3][3] = { { 'x' , 'o' , 'x' }, { 'o' , 'o' , 'x' }, { '_' , '_' , '_' } }; Move bestMove = findBestMove(board); printf ( "The Optimal Move is :\n" ); printf ( "ROW: %d COL: %d\n\n" , bestMove.row, bestMove.col ); return 0; } |
Java
// Java program to find the // next optimal move for a player class GFG { static class Move { int row, col; }; static char player = 'x' , opponent = 'o' ; // This function returns true if there are moves // remaining on the board. It returns false if // there are no moves left to play. static Boolean isMovesLeft( char board[][]) { for ( int i = 0 ; i < 3 ; i++) for ( int j = 0 ; j < 3 ; j++) if (board[i][j] == '_' ) return true ; return false ; } // This is the evaluation function as discussed // in the previous article ( http://goo.gl/sJgv68 ) static int evaluate( char b[][]) { // Checking for Rows for X or O victory. for ( int row = 0 ; row < 3 ; row++) { if (b[row][ 0 ] == b[row][ 1 ] && b[row][ 1 ] == b[row][ 2 ]) { if (b[row][ 0 ] == player) return + 10 ; else if (b[row][ 0 ] == opponent) return - 10 ; } } // Checking for Columns for X or O victory. for ( int col = 0 ; col < 3 ; col++) { if (b[ 0 ][col] == b[ 1 ][col] && b[ 1 ][col] == b[ 2 ][col]) { if (b[ 0 ][col] == player) return + 10 ; else if (b[ 0 ][col] == opponent) return - 10 ; } } // Checking for Diagonals for X or O victory. if (b[ 0 ][ 0 ] == b[ 1 ][ 1 ] && b[ 1 ][ 1 ] == b[ 2 ][ 2 ]) { if (b[ 0 ][ 0 ] == player) return + 10 ; else if (b[ 0 ][ 0 ] == opponent) return - 10 ; } if (b[ 0 ][ 2 ] == b[ 1 ][ 1 ] && b[ 1 ][ 1 ] == b[ 2 ][ 0 ]) { if (b[ 0 ][ 2 ] == player) return + 10 ; else if (b[ 0 ][ 2 ] == opponent) return - 10 ; } // Else if none of them have won then return 0 return 0 ; } // This is the minimax function. It considers all // the possible ways the game can go and returns // the value of the board static int minimax( char board[][], int depth, Boolean isMax) { int score = evaluate(board); // If Maximizer has won the game // return his/her evaluated score if (score == 10 ) return score; // If Minimizer has won the game // return his/her evaluated score if (score == - 10 ) return score; // If there are no more moves and // no winner then it is a tie if (isMovesLeft(board) == false ) return 0 ; // If this maximizer's move if (isMax) { int best = - 1000 ; // Traverse all cells for ( int i = 0 ; i < 3 ; i++) { for ( int j = 0 ; j < 3 ; j++) { // Check if cell is empty if (board[i][j]== '_' ) { // Make the move board[i][j] = player; // Call minimax recursively and choose // the maximum value best = Math.max(best, minimax(board, depth + 1 , !isMax)); // Undo the move board[i][j] = '_' ; } } } return best; } // If this minimizer's move else { int best = 1000 ; // Traverse all cells for ( int i = 0 ; i < 3 ; i++) { for ( int j = 0 ; j < 3 ; j++) { // Check if cell is empty if (board[i][j] == '_' ) { // Make the move board[i][j] = opponent; // Call minimax recursively and choose // the minimum value best = Math.min(best, minimax(board, depth + 1 , !isMax)); // Undo the move board[i][j] = '_' ; } } } return best; } } // This will return the best possible // move for the player static Move findBestMove( char board[][]) { int bestVal = - 1000 ; Move bestMove = new Move(); bestMove.row = - 1 ; bestMove.col = - 1 ; // Traverse all cells, evaluate minimax function // for all empty cells. And return the cell // with optimal value. for ( int i = 0 ; i < 3 ; i++) { for ( int j = 0 ; j < 3 ; j++) { // Check if cell is empty if (board[i][j] == '_' ) { // Make the move board[i][j] = player; // compute evaluation function for this // move. int moveVal = minimax(board, 0 , false ); // Undo the move board[i][j] = '_' ; // If the value of the current move is // more than the best value, then update // best/ if (moveVal > bestVal) { bestMove.row = i; bestMove.col = j; bestVal = moveVal; } } } } System.out.printf( "The value of the best Move " + "is : %d\n\n" , bestVal); return bestMove; } // Driver code public static void main(String[] args) { char board[][] = {{ 'x' , 'o' , 'x' }, { 'o' , 'o' , 'x' }, { '_' , '_' , '_' }}; Move bestMove = findBestMove(board); System.out.printf( "The Optimal Move is :\n" ); System.out.printf( "ROW: %d COL: %d\n\n" , bestMove.row, bestMove.col ); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program to find the next optimal move for a player player, opponent = 'x' , 'o' # This function returns true if there are moves # remaining on the board. It returns false if # there are no moves left to play. def isMovesLeft(board) : for i in range ( 3 ) : for j in range ( 3 ) : if (board[i][j] = = '_' ) : return True return False # This is the evaluation function as discussed # in the previous article ( http://goo.gl/sJgv68 ) def evaluate(b) : # Checking for Rows for X or O victory. for row in range ( 3 ) : if (b[row][ 0 ] = = b[row][ 1 ] and b[row][ 1 ] = = b[row][ 2 ]) : if (b[row][ 0 ] = = player) : return 10 elif (b[row][ 0 ] = = opponent) : return - 10 # Checking for Columns for X or O victory. for col in range ( 3 ) : if (b[ 0 ][col] = = b[ 1 ][col] and b[ 1 ][col] = = b[ 2 ][col]) : if (b[ 0 ][col] = = player) : return 10 elif (b[ 0 ][col] = = opponent) : return - 10 # Checking for Diagonals for X or O victory. if (b[ 0 ][ 0 ] = = b[ 1 ][ 1 ] and b[ 1 ][ 1 ] = = b[ 2 ][ 2 ]) : if (b[ 0 ][ 0 ] = = player) : return 10 elif (b[ 0 ][ 0 ] = = opponent) : return - 10 if (b[ 0 ][ 2 ] = = b[ 1 ][ 1 ] and b[ 1 ][ 1 ] = = b[ 2 ][ 0 ]) : if (b[ 0 ][ 2 ] = = player) : return 10 elif (b[ 0 ][ 2 ] = = opponent) : return - 10 # Else if none of them have won then return 0 return 0 # This is the minimax function. It considers all # the possible ways the game can go and returns # the value of the board def minimax(board, depth, isMax) : score = evaluate(board) # If Maximizer has won the game return his/her # evaluated score if (score = = 10 ) : return score # If Minimizer has won the game return his/her # evaluated score if (score = = - 10 ) : return score # If there are no more moves and no winner then # it is a tie if (isMovesLeft(board) = = False ) : return 0 # If this maximizer's move if (isMax) : best = - 1000 # Traverse all cells for i in range ( 3 ) : for j in range ( 3 ) : # Check if cell is empty if (board[i][j] = = '_' ) : # Make the move board[i][j] = player # Call minimax recursively and choose # the maximum value best = max ( best, minimax(board, depth + 1 , not isMax) ) # Undo the move board[i][j] = '_' return best # If this minimizer's move else : best = 1000 # Traverse all cells for i in range ( 3 ) : for j in range ( 3 ) : # Check if cell is empty if (board[i][j] = = '_' ) : # Make the move board[i][j] = opponent # Call minimax recursively and choose # the minimum value best = min (best, minimax(board, depth + 1 , not isMax)) # Undo the move board[i][j] = '_' return best # This will return the best possible move for the player def findBestMove(board) : bestVal = - 1000 bestMove = ( - 1 , - 1 ) # Traverse all cells, evaluate minimax function for # all empty cells. And return the cell with optimal # value. for i in range ( 3 ) : for j in range ( 3 ) : # Check if cell is empty if (board[i][j] = = '_' ) : # Make the move board[i][j] = player # compute evaluation function for this # move. moveVal = minimax(board, 0 , False ) # Undo the move board[i][j] = '_' # If the value of the current move is # more than the best value, then update # best/ if (moveVal > bestVal) : bestMove = (i, j) bestVal = moveVal print ( "The value of the best Move is :" , bestVal) print () return bestMove # Driver code board = [ [ 'x' , 'o' , 'x' ], [ 'o' , 'o' , 'x' ], [ '_' , '_' , '_' ] ] bestMove = findBestMove(board) print ( "The Optimal Move is :" ) print ( "ROW:" , bestMove[ 0 ], " COL:" , bestMove[ 1 ]) # This code is contributed by divyesh072019 |
C#
// C# program to find the // next optimal move for a player using System; using System.Collections.Generic; class GFG { class Move { public int row, col; }; static char player = 'x' , opponent = 'o' ; // This function returns true if there are moves // remaining on the board. It returns false if // there are no moves left to play. static Boolean isMovesLeft( char [,]board) { for ( int i = 0; i < 3; i++) for ( int j = 0; j < 3; j++) if (board[i, j] == '_' ) return true ; return false ; } // This is the evaluation function as discussed // in the previous article ( http://goo.gl/sJgv68 ) static int evaluate( char [,]b) { // Checking for Rows for X or O victory. for ( int row = 0; row < 3; row++) { if (b[row, 0] == b[row, 1] && b[row, 1] == b[row, 2]) { if (b[row, 0] == player) return +10; else if (b[row, 0] == opponent) return -10; } } // Checking for Columns for X or O victory. for ( int col = 0; col < 3; col++) { if (b[0, col] == b[1, col] && b[1, col] == b[2, col]) { if (b[0, col] == player) return +10; else if (b[0, col] == opponent) return -10; } } // Checking for Diagonals for X or O victory. if (b[0, 0] == b[1, 1] && b[1, 1] == b[2, 2]) { if (b[0, 0] == player) return +10; else if (b[0, 0] == opponent) return -10; } if (b[0, 2] == b[1, 1] && b[1, 1] == b[2, 0]) { if (b[0, 2] == player) return +10; else if (b[0, 2] == opponent) return -10; } // Else if none of them have won then return 0 return 0; } // This is the minimax function. It considers all // the possible ways the game can go and returns // the value of the board static int minimax( char [,]board, int depth, Boolean isMax) { int score = evaluate(board); // If Maximizer has won the game // return his/her evaluated score if (score == 10) return score; // If Minimizer has won the game // return his/her evaluated score if (score == -10) return score; // If there are no more moves and // no winner then it is a tie if (isMovesLeft(board) == false ) return 0; // If this maximizer's move if (isMax) { int best = -1000; // Traverse all cells for ( int i = 0; i < 3; i++) { for ( int j = 0; j < 3; j++) { // Check if cell is empty if (board[i, j] == '_' ) { // Make the move board[i, j] = player; // Call minimax recursively and choose // the maximum value best = Math.Max(best, minimax(board, depth + 1, !isMax)); // Undo the move board[i, j] = '_' ; } } } return best; } // If this minimizer's move else { int best = 1000; // Traverse all cells for ( int i = 0; i < 3; i++) { for ( int j = 0; j < 3; j++) { // Check if cell is empty if (board[i, j] == '_' ) { // Make the move board[i, j] = opponent; // Call minimax recursively and choose // the minimum value best = Math.Min(best, minimax(board, depth + 1, !isMax)); // Undo the move board[i, j] = '_' ; } } } return best; } } // This will return the best possible // move for the player static Move findBestMove( char [,]board) { int bestVal = -1000; Move bestMove = new Move(); bestMove.row = -1; bestMove.col = -1; // Traverse all cells, evaluate minimax function // for all empty cells. And return the cell // with optimal value. for ( int i = 0; i < 3; i++) { for ( int j = 0; j < 3; j++) { // Check if cell is empty if (board[i, j] == '_' ) { // Make the move board[i, j] = player; // compute evaluation function for this // move. int moveVal = minimax(board, 0, false ); // Undo the move board[i, j] = '_' ; // If the value of the current move is // more than the best value, then update // best/ if (moveVal > bestVal) { bestMove.row = i; bestMove.col = j; bestVal = moveVal; } } } } Console.Write( "The value of the best Move " + "is : {0}\n\n" , bestVal); return bestMove; } // Driver code public static void Main(String[] args) { char [,]board = {{ 'x' , 'o' , 'x' }, { 'o' , 'o' , 'x' }, { '_' , '_' , '_' }}; Move bestMove = findBestMove(board); Console.Write( "The Optimal Move is :\n" ); Console.Write( "ROW: {0} COL: {1}\n\n" , bestMove.row, bestMove.col ); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to find the // next optimal move for a player class Move { constructor() { let row,col; } } let player = 'x' , opponent = 'o' ; // This function returns true if there are moves // remaining on the board. It returns false if // there are no moves left to play. function isMovesLeft(board) { for (let i = 0; i < 3; i++) for (let j = 0; j < 3; j++) if (board[i][j] == '_' ) return true ; return false ; } // This is the evaluation function as discussed // in the previous article ( http://goo.gl/sJgv68 ) function evaluate(b) { // Checking for Rows for X or O victory. for (let row = 0; row < 3; row++) { if (b[row][0] == b[row][1] && b[row][1] == b[row][2]) { if (b[row][0] == player) return +10; else if (b[row][0] == opponent) return -10; } } // Checking for Columns for X or O victory. for (let col = 0; col < 3; col++) { if (b[0][col] == b[1][col] && b[1][col] == b[2][col]) { if (b[0][col] == player) return +10; else if (b[0][col] == opponent) return -10; } } // Checking for Diagonals for X or O victory. if (b[0][0] == b[1][1] && b[1][1] == b[2][2]) { if (b[0][0] == player) return +10; else if (b[0][0] == opponent) return -10; } if (b[0][2] == b[1][1] && b[1][1] == b[2][0]) { if (b[0][2] == player) return +10; else if (b[0][2] == opponent) return -10; } // Else if none of them have // won then return 0 return 0; } // This is the minimax function. It // considers all the possible ways // the game can go and returns the // value of the board function minimax(board, depth, isMax) { let score = evaluate(board); // If Maximizer has won the game // return his/her evaluated score if (score == 10) return score; // If Minimizer has won the game // return his/her evaluated score if (score == -10) return score; // If there are no more moves and // no winner then it is a tie if (isMovesLeft(board) == false ) return 0; // If this maximizer's move if (isMax) { let best = -1000; // Traverse all cells for (let i = 0; i < 3; i++) { for (let j = 0; j < 3; j++) { // Check if cell is empty if (board[i][j]=='_ ') { // Make the move board[i][j] = player; // Call minimax recursively // and choose the maximum value best = Math.max(best, minimax(board, depth + 1, !isMax)); // Undo the move board[i][j] = ' _ '; } } } return best; } // If this minimizer' s move else { let best = 1000; // Traverse all cells for (let i = 0; i < 3; i++) { for (let j = 0; j < 3; j++) { // Check if cell is empty if (board[i][j] == '_' ) { // Make the move board[i][j] = opponent; // Call minimax recursively and // choose the minimum value best = Math.min(best, minimax(board, depth + 1, !isMax)); // Undo the move board[i][j] = '_' ; } } } return best; } } // This will return the best possible // move for the player function findBestMove(board) { let bestVal = -1000; let bestMove = new Move(); bestMove.row = -1; bestMove.col = -1; // Traverse all cells, evaluate // minimax function for all empty // cells. And return the cell // with optimal value. for (let i = 0; i < 3; i++) { for (let j = 0; j < 3; j++) { // Check if cell is empty if (board[i][j] == '_' ) { // Make the move board[i][j] = player; // compute evaluation function // for this move. let moveVal = minimax(board, 0, false ); // Undo the move board[i][j] = '_' ; // If the value of the current move // is more than the best value, then // update best if (moveVal > bestVal) { bestMove.row = i; bestMove.col = j; bestVal = moveVal; } } } } document.write( "The value of the best Move " + "is : " , bestVal + "<br><br>" ); return bestMove; } // Driver code let board = [ [ 'x' , 'o' , 'x' ], [ 'o' , 'o' , 'x' ], [ '_' , '_' , '_' ] ]; let bestMove = findBestMove(board); document.write( "The Optimal Move is :<br>" ); document.write( "ROW: " + bestMove.row + " COL: " + bestMove.col + "<br>" ); // This code is contributed by rag2127 </script> |
Output :
The value of the best Move is : 10 The Optimal Move is : ROW: 2 COL: 2
Explanation :
This image depicts all the possible paths that the game can take from the root board state. It is often called the Game Tree.
The 3 possible scenarios in the above example are :
- Left Move : If X plays [2,0]. Then O will play [2,1] and win the game. The value of this move is -10
- Middle Move : If X plays [2,1]. Then O will play [2,2] which draws the game. The value of this move is 0
- Right Move : If X plays [2,2]. Then he will win the game. The value of this move is +10;
Remember, even though X has a possibility of winning if he plays the middle move, O will never let that happen and will choose to draw instead.
Therefore the best choice for X, is to play [2,2], which will guarantee a victory for him.
We do encourage our readers to try giving various inputs and understanding why the AI choose to play that move. Minimax may confuse programmers as it thinks several moves in advance and is very hard to debug at times. Remember this implementation of minimax algorithm can be applied any 2 player board game with some minor changes to the board structure and how we iterate through the moves. Also sometimes it is impossible for minimax to compute every possible game state for complex games like Chess. Hence we only compute upto a certain depth and use the evaluation function to calculate the value of the board.
Stay tuned for next weeks article where we shall be discussing about Alpha-Beta pruning that can drastically improve the time taken by minimax to traverse a game tree.
This article is contributed by Akshay L Aradhya. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!