Given a non-negative integer N, the task is to find two integers A (greatest integer smaller than N) and (smallest integer greater than N) such that A + N = A ^ N and B + N = B ^ N
Examples:
Input: N = 5
Output: A = 2 and B = 8
2 + 8 = 2 ^ 8 = 10
Input: N = 10
Output: A = 5 and B = 16
5 + 16 = 5 ^ 16 = 21
Approach: Lets find A and B independently. To solve this problem we have to use the property, x + y = x^y + 2 * (x & y)
Since the problem states that xor sum is equal to the given sum which implies that their AND must be 0.
- Finding A: N can be represented as a series of bits of 0 and 1. To find A we will first have to find the most significant bit of N which is set. Since A & N = 0, The places where N has set bit, for that places we will make bits of A as unset and for the places where N has unset bit, we will make that bit set for A as we want to maximize A. This we will do for all the bits from most significant to the least significant. Hence we will get our A.
- Finding B: Finding B is easy. Let i be the position of the leftmost set bit in 1. We want B to be greater than N, also we want B & N =0. Hence using these two facts B will be always (1<< (i+1)).
Below is the implementation of the above approach:
CPP
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define MAX 32 // Function to find A and B void findAB( int N) { bitset<MAX> arr(N), brr(N); // To store the leftmost set bit in N int leftsetN = -1; for ( int i = MAX - 1; i >= 0; --i) { if (arr[i] == 1) { leftsetN = i; break ; } } // To store the value of A int A = 0; for ( int i = leftsetN; i >= 0; --i) { // If the bit is unset in N // then we will set it in A if (arr[i] == 0) { A |= (1 << i); } } // To store the value of B int B = 0; // B will be (1 << (leftsetN + 1)) B = 1 << (leftsetN + 1); // Print the values of A and B cout << "A = " << A << " and B = " << B; } // Driver code int main() { int N = 5; findAB(N); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static int MAX = 32 ; // Function to reverse string static String Reverse(String s) { StringBuilder rev = new StringBuilder(); // append a string into StringBuilder rev rev.append(s); // reverse StringBuilder rev rev.reverse(); return rev.toString(); } // Function to find A and B static void findAB( int N) { // Creating a bitset BitSet arr = BitSet.valueOf( new long []{N}); // To store the leftmost set bit in N int leftsetN = - 1 ; for ( int i = 63 ; i >= 0 ; --i) { if (arr.get(i)) { leftsetN = i; break ; } } // To store the value of A int A = 0 ; for ( int i = leftsetN; i >= 0 ; --i) { // If the bit is unset in N // then we will set it in A if (!arr.get(i)) { A |= ( 1 << i); } } // To store the value of B int B = 0 ; // B will be (1 << (leftsetN + 1)) B = 1 << (leftsetN + 1 ); // Print the values of A and B System.out.println( "A = " + A + " and B = " + B); } // Driver code public static void main(String[] args) { int N = 5 ; findAB(N); } } // This code is contributed by phasing17. |
Python3
# Python implementation of the approach MAX = 32 # Function to find A and B def findAB(N): arr = bin (N)[ 2 ::] arr = "0" * ( MAX - len (arr)) + arr arr = arr[:: - 1 ] # To store the leftmost set bit in N leftsetN = - 1 ; for i in range ( MAX - 1 , - 1 , - 1 ): if (arr[i] = = '1' ): leftsetN = i; break ; # To store the value of A A = 0 ; for i in range (leftsetN, - 1 , - 1 ): # If the bit is unset in N # then we will set it in A if (arr[i] = = '0' ) : A | = ( 1 << (i)); # To store the value of B B = 0 ; # B will be (1 << (leftsetN + 1)) B = 1 << ((leftsetN) + 1 ); # Print the values of A and B print ( "A =" , A, "and B =" , B); # Driver code N = 5 ; findAB(N); # This code is contributed by phasing17 |
C#
// C# implementation of the approach using System; using System.Collections.Specialized; using System.Collections.Generic; class GFG { static int MAX = 32; // Function to reverse string static string Reverse( string s) { char [] charArray = s.ToCharArray(); Array.Reverse(charArray); return new string (charArray); } // Function to find A and B static void findAB( int N) { BitVector32 arr = new BitVector32(N); string arrs = arr.ToString(); arrs = Reverse(arrs.Substring(arrs.Length - 33, 32)); // To store the leftmost set bit in N int leftsetN = -1; for ( int i = MAX - 1; i >= 0; --i) { if (arrs[i] == '1' ) { leftsetN = i; break ; } } // To store the value of A int A = 0; for ( int i = leftsetN; i >= 0; --i) { // If the bit is unset in N // then we will set it in A if (arrs[i] == '0' ) { A |= (1 << i); } } // To store the value of B int B = 0; // B will be (1 << (leftsetN + 1)) B = 1 << (leftsetN + 1); // Print the values of A and B Console.WriteLine( "A = " + A + " and B = " + B); } // Driver code public static void Main( string [] args) { int N = 5; findAB(N); } } |
Javascript
// JS implementation of the approach let MAX = 32 // Function to find A and B function findAB(N) { let arr = N.toString(2); arr = "0" .repeat(MAX - arr.length) + arr; arr = arr.split( "" ); arr.reverse() // To store the leftmost set bit in N let leftsetN = -1; for (let i = MAX - 1; i >= 0; --i) { if (arr[i] == '1' ) { leftsetN = i; break ; } } // To store the value of A let A = 0; for (let i = leftsetN; i >= 0; --i) { // If the bit is unset in N // then we will set it in A if (arr[i] == '0' ) { A |= (1 << (i)); } } // To store the value of B let B = 0; // B will be (1 << (leftsetN + 1)) B = 1 << ((leftsetN) + 1); // Print the values of A and B console.log( "A = " + A + " and B = " + B); } // Driver code let N = 5; findAB(N); // This code is contributed by phasing17 |
A = 2 and B = 8
Time Complexity: O(MAX)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!