Given a range represented by two positive integers L and R. Find the number lying in the range having the maximum product of the digits.
Examples:
Input : L = 1, R = 10 Output : 9 Input : L = 51, R = 62 Output : 59
Approach : The key idea here is to iterate over the digits of the number R starting from the most significant digit. Going from left to right, i.e. from most significant digit to the least significant digit, replace the current digit with one less than current digit and replace all the digits after current digit in the number with 9, since the number has already become smaller than R at the current position so we can safely put any number in the following digits to maximize the product of digits. Also, check if the resulting number is greater than L to remain in the range and update the maximum product.
Below is the implementation of the above approach:
C++
// CPP Program to find the number in a // range having maximum product of the // digits #include <bits/stdc++.h> using namespace std; // Returns the product of digits of number x int product( int x) { int prod = 1; while (x) { prod *= (x % 10); x /= 10; } return prod; } // This function returns the number having // maximum product of the digits int findNumber( int l, int r) { // Converting both integers to strings string a = to_string(l); string b = to_string(r); // Let the current answer be r int ans = r; for ( int i = 0; i < b.size(); i++) { if (b[i] == '0' ) continue ; // Stores the current number having // current digit one less than current // digit in b string curr = b; curr[i] = ((curr[i] - '0' ) - 1) + '0' ; // Replace all following digits with 9 // to maximise the product for ( int j = i + 1; j < curr.size(); j++) curr[j] = '9' ; // Convert string to number int num = 0; for ( auto c : curr) num = num * 10 + (c - '0' ); // Check if it lies in range and its product // is greater than max product if (num >= l && product(ans) < product(num)) ans = num; } return ans; } // Driver Code int main() { int l = 1, r = 10; cout << findNumber(l, r) << endl; l = 51, r = 62; cout << findNumber(l, r) << endl; return 0; } |
Java
// Java Program to find the number in a // range having maximum product of the // digits class GFG { // Returns the product of digits of number x static int product( int x) { int prod = 1 ; while (x > 0 ) { prod *= (x % 10 ); x /= 10 ; } return prod; } // This function returns the number having // maximum product of the digits static int findNumber( int l, int r) { // Converting both integers to strings //string a = l.ToString(); String b = Integer.toString(r); // Let the current answer be r int ans = r; for ( int i = 0 ; i < b.length(); i++) { if (b.charAt(i) == '0' ) continue ; // Stores the current number having // current digit one less than current // digit in b char [] curr = b.toCharArray(); curr[i] = ( char )((( int )(curr[i] - ( int ) '0' ) - 1 ) + ( int )( '0' )); // Replace all following digits with 9 // to maximise the product for ( int j = i + 1 ; j < curr.length; j++) curr[j] = '9' ; // Convert string to number int num = 0 ; for ( int j = 0 ; j < curr.length; j++) num = num * 10 + (curr[j] - '0' ); // Check if it lies in range and its product // is greater than max product if (num >= l && product(ans) < product(num)) ans = num; } return ans; } // Driver Code public static void main (String[] args) { int l = 1 , r = 10 ; System.out.println(findNumber(l, r)); l = 51 ; r = 62 ; System.out.println(findNumber(l, r)); } } // This code is contributed by chandan_jnu |
Python3
# Python3 Program to find the number # in a range having maximum product # of the digits # Returns the product of digits # of number x def product(x) : prod = 1 while (x) : prod * = (x % 10 ) x / / = 10 ; return prod # This function returns the number having # maximum product of the digits def findNumber(l, r) : # Converting both integers to strings a = str (l); b = str (r); # Let the current answer be r ans = r for i in range ( len (b)) : if (b[i] = = '0' ) : continue # Stores the current number having # current digit one less than current # digit in b curr = list (b) curr[i] = str ((( ord (curr[i]) - ord ( '0' )) - 1 ) + ord ( '0' )) # Replace all following digits with 9 # to maximise the product for j in range (i + 1 , len (curr)) : curr[j] = str ( ord ( '9' )) # Convert string to number num = 0 for c in curr : num = num * 10 + ( int (c) - ord ( '0' )) # Check if it lies in range and its # product is greater than max product if (num > = l and product(ans) < product(num)) : ans = num return ans # Driver Code if __name__ = = "__main__" : l, r = 1 , 10 print (findNumber(l, r)) l, r = 51 , 62 print (findNumber(l, r)) # This code is contributed by Ryuga |
C#
// C# Program to find the number in a // range having maximum product of the // digits using System; class GFG { // Returns the product of digits of number x static int product( int x) { int prod = 1; while (x > 0) { prod *= (x % 10); x /= 10; } return prod; } // This function returns the number having // maximum product of the digits static int findNumber( int l, int r) { // Converting both integers to strings //string a = l.ToString(); string b = r.ToString(); // Let the current answer be r int ans = r; for ( int i = 0; i < b.Length; i++) { if (b[i] == '0' ) continue ; // Stores the current number having // current digit one less than current // digit in b char [] curr = b.ToCharArray(); curr[i] = ( char )((( int )(curr[i] - ( int ) '0' ) - 1) + ( int )( '0' )); // Replace all following digits with 9 // to maximise the product for ( int j = i + 1; j < curr.Length; j++) curr[j] = '9' ; // Convert string to number int num = 0; for ( int j = 0; j < curr.Length; j++) num = num * 10 + (curr[j] - '0' ); // Check if it lies in range and its product // is greater than max product if (num >= l && product(ans) < product(num)) ans = num; } return ans; } // Driver Code static void Main() { int l = 1, r = 10; Console.WriteLine(findNumber(l, r)); l = 51; r = 62; Console.WriteLine(findNumber(l, r)); } } // This code is contributed by chandan_jnu |
PHP
<?php // PHP Program to find the number // in a range having maximum product // of the digits // Returns the product of digits // of number x function product( $x ) { $prod = 1; while ( $x ) { $prod *= ( $x % 10); $x = (int)( $x / 10); } return $prod ; } // This function returns the number // having maximum product of the digits function findNumber( $l , $r ) { // Let the current answer be r $ans = $r ; // Converting both integers // to strings $a = strval ( $l ); $b = strval ( $r ); for ( $i = 0; $i < strlen ( $b ); $i ++) { if ( $b [ $i ] == '0' ) continue ; // Stores the current number having // current digit one less than // current digit in b $curr = $b ; $curr [ $i ] = chr (((ord( $curr [ $i ]) - ord( '0' )) - 1) + ord( '0' )); // Replace all following digits // with 9 to maximise the product for ( $j = $i + 1; $j < strlen ( $curr ); $j ++) $curr [ $j ] = '9' ; // Convert string to number $num = 0; for ( $c = 0; $c < strlen ( $curr ); $c ++) $num = $num * 10 + (ord( $curr [ $c ]) - ord( '0' )); // Check if it lies in range and its // product is greater than max product if ( $num >= $l and product( $ans ) < product( $num )) $ans = $num ; } return $ans ; } // Driver Code $l = 1; $r = 10; print (findNumber( $l , $r ) . "\n" ); $l = 51; $r = 62; print (findNumber( $l , $r )); // This code is contributed // by chandan_jnu ?> |
Javascript
<script> // Javascript Program to find the number in a // range having maximum product of the // digits // Returns the product of digits of number x function product(x) { let prod = 1; while (x > 0) { prod *= (x % 10); x = parseInt(x / 10, 10); } return prod; } // This function returns the number having // maximum product of the digits function findNumber(l, r) { // Converting both integers to strings //string a = l.ToString(); let b = r.toString(); // Let the current answer be r let ans = r; for (let i = 0; i < b.length; i++) { if (b[i] == '0' ) continue ; // Stores the current number having // current digit one less than current // digit in b let curr = b.split( '' ); curr[i] = String.fromCharCode(((curr[i].charCodeAt() - '0' .charCodeAt()) - 1) + '0' .charCodeAt()); // Replace all following digits with 9 // to maximise the product for (let j = i + 1; j < curr.length; j++) curr[j] = '9' ; // Convert string to number let num = 0; for (let j = 0; j < curr.length; j++) num = num * 10 + (curr[j].charCodeAt() - '0' .charCodeAt()); // Check if it lies in range and its product // is greater than max product if (num >= l && product(ans) < product(num)) ans = num; } return ans; } let l = 1, r = 10; document.write(findNumber(l, r) + "</br>" ); l = 51; r = 62; document.write(findNumber(l, r)); // This code is contributed by decode2207. </script> |
9 59
Time Complexity: O((logr)2), where r is the given number.
Auxiliary Space: O(logr) where r is the given number.
Another Approach: It can be solved using Digit Dp
Key Points of Observation:-
1. As we know we use tight in digit dp to check whether the range for this digit is restricted or not,same here we will use tight ta and tight tb (basically two tight conditions) ,where ta will tell us
the lower_bound of the digit and tb will tell us the upper_bound of the digit and reason to use two tight values is that we have to calculate the maximum product,it may be the case as:-
max(l,r) ? max(r) – max(l-1) and our integer should lie in a range from l to r.
2. Let suppose the range values as, l=5 and r=15 , so to make size equal we should append the zeroes in front of number after converting to string and taking care of leading zeroes while calculating the answer,
Dp states include:-
1) pos
- it will tell the position of index from left in the integer
2) ta
- it represents the lower_bound of a digit,we have to make sure number should be greater than or equal to { l }
- Let suppose we are building a number greater than equal to 0055 and we have created a sequence like 005, so at the 4th place, we can’t put digit less than 5,that will only have digits between 5 to 9. So for checking this bound, we need ta.
Example : Consider the value of l = 005 Index : 0 1 2 digits : 0 0 5 valid numbers like: 005,006,007,008... invalid numbers like: ...001,002,003,004
3) tb
- the upper_bound of a digit,we have to make sure number should be lesser than or equal to { r }
- Again let suppose we are building a number lesser than equal to 526 and we have created a sequence like 52, so at the 3rd place, we can’t put digit greater than 6,there we can only place between 0 to 6. So for checking this bound, we need tb
Example : Consider the value of r = 150 Index : 0 1 2 digits : 1 5 0 valid numbers like: ...148,149,150 invalid numbers like: 151,152,153...
4) st
- used to check for leading zeroes( as 005 ~ 5)
3. Constraints: l and r (1???l ??r???10^18)
Algorithm:
- We will traverse i from start to end on the basis of tight ta and tight tb as:
start = ta == 1 ? l[ pos ] - '0' : 0; end = tb ==1 ? r[ pos ] -'0' : 9;
- Firstly we will check for leading zeroes as :
if ( st == 0 and i = 0) then multiply with 1,else multiply with i
- For every position we will calculate the product of sequence and check whether it is the maximum product or not and store the corresponding number
int ans = 0; for(int i = start; i <= end; i++){ int val = i; if (st==0 and i==0) val = 1; ans = max (ans, val * solve (pos+1, ta&(i==start),tb&(i==end) ,st|i>0); }
C++ implementation:
C++
// CPP program for the above approach #include <bits/stdc++.h> using namespace std; #define int long long int // pair of array to store product and number // dp[pos][tight1][tight2][start] pair< int , string> dp[20][2][2][2]; pair< int , string> recur(string l, string r, int pos, int ta, int tb, int st) { // Base case if pos is equal // to l or r size return // pair{1,""} if (pos == l.size()) { return { 1, "" }; } // look up condition if (dp[pos][ta][tb][st].first != -1) return dp[pos][ta][tb][st]; // Lower bound condition int start = ta ? l[pos] - '0' : 0; // Upper bound condition int end = tb ? r[pos] - '0' : 9; // To store the maximum product // initially it is set to -1 int ans = -1; // To store the corresponding // number as number is large // so store it as a string string s = "" ; for ( int i = start; i <= end; i++) { // Multiply with this val int val = i; // check for leading zeroes as 00005 if (st == 0 and i == 0) { val = 1; } // Recursive call for next // position and store it in // a pair first gives // maximum product pair // second gives number which // gave maximum product pair< int , string> temp = recur(l, r, pos + 1, ta & (i == start), tb & (i == end), st | i > 0); // check if calculated product is greater than // previous calculated ans if (temp.first * val > ans) { ans = temp.first * val; // update string only if no leading zeroes // becoz no use to append the leading zeroes if (i == 0 and st == 0) { s = temp.second; } else { s = temp.second; s.push_back( '0' + i); } } } // while returning memoize the ans return dp[pos][ta][tb][st] = { ans, s }; } pair< int , string> solve( int a, int b) { // convert int l to string L and int r to string R , // as integer value should be large string L = to_string(a); string R = to_string(b); // to make the size of strings // equal append zeroes in // front of string L if (L.size() < R.size()) { reverse(L.begin(), L.end()); while (L.size() < R.size()) { L.push_back( '0' ); } reverse(L.begin(), L.end()); } // initialize dp // as it is pair of array so memset will not work for ( int i = 0; i < 20; i++) { for ( int j = 0; j < 2; j++) { for ( int k = 0; k < 2; k++) { for ( int l = 0; l < 2; l++) { dp[i][j][k][l].first = -1; } } } } // as we have to return pair second value // it's that number which gaves maximum product // initially pos=0,ta=1,tb=1,start=0(becoz number is not // started yet) pair< int , string> ans = recur(L, R, 0, 1, 1, 0); // reverse it becoz we were appending from right to left // in recursive call reverse(ans.second.begin(), ans.second.end()); return { ans.first, ans.second }; } signed main() { // take l and r as input int l = 52, r = 62; cout << "l= " << l << "\n" ; cout << "r= " << r << "\n" ; pair< int , string> ans = solve(l, r); cout << "Maximum Product: " << ans.first << "\n" ; cout << "Number which gave maximum product: " << ans.second; return 0; } |
Java
// JAVA program for the above approach import java.util.*; import java.io.*; import java.math.*; class GFG { // pair of array to store product and number // dp[pos][tight1][tight2][start] static class pair { int first; String second; pair( int first,String second) { this .first=first; this .second=second; } } static pair dp[][][][]; static pair recur(String l, String r, int pos, int ta, int tb, int st) { // Base case if pos is equal // to l or r size return // pair{1,""} if (pos == l.length()) { return new pair( 1 , "" ); } // look up condition if (dp[pos][ta][tb][st].first != - 1 ) return dp[pos][ta][tb][st]; // Lower bound condition int start = ta == 1 ? l.charAt(pos) - '0' : 0 ; // Upper bound condition int end = tb == 1 ? r.charAt(pos) - '0' : 9 ; // To store the maximum product // initially it is set to -1 int ans = - 1 ; // To store the corresponding // number as number is large // so store it as a string String s = "" ; for ( int i = start; i <= end; i++) { // Multiply with this val int val = i; // check for leading zeroes as 00005 if (st == 0 && i == 0 ) { val = 1 ; } // Recursive call for next // position and store it in // a pair first gives // maximum product pair // second gives number which // gave maximum product pair temp = recur(l, r, pos + 1 , ta== 1 ? (i == start ? 1 : 0 ) : 0 , tb== 1 ? (i == end ? 1 : 0 ) : 0 , (st | i) > 0 ? 1 : 0 ); // check if calculated product is greater than // previous calculated ans if (temp.first * val > ans) { ans = temp.first * val; // update string only if no leading zeroes // becoz no use to append the leading zeroes if (i == 0 && st == 0 ) { s = temp.second; } else { s = temp.second; s+=(i); } } } // while returning memoize the ans return dp[pos][ta][tb][st] = new pair(ans, s ); } static String reverse(String x) { StringBuilder sb= new StringBuilder( "" ); sb.append(x); sb.reverse(); return sb.toString(); } static pair solve( int a, int b) { // convert int l to string L and int r to string R , // as integer value should be large String L = Integer.toString(a); String R = Integer.toString(b); // to make the size of strings // equal append zeroes in // front of string L if (L.length() < R.length()) { L=reverse(L); while (L.length() < R.length()) { L += "0" ; } L=reverse(L); } // initialize dp // as it is pair of array so memset will not work for ( int i = 0 ; i < 20 ; i++) { for ( int j = 0 ; j < 2 ; j++) { for ( int k = 0 ; k < 2 ; k++) { for ( int l = 0 ; l < 2 ; l++) { dp[i][j][k][l] = new pair(- 1 , "" ); } } } } // as we have to return pair second value // it's that number which gaves maximum product // initially pos=0,ta=1,tb=1,start=0(becoz number is not // started yet) pair ans = recur(L, R, 0 , 1 , 1 , 0 ); // reverse it becoz we were appending from right to left // in recursive call ans.second = reverse(ans.second); pair result = new pair(ans.first, ans.second); return result; } public static void main(String args[]) { // take l and r as input int l = 52 , r = 62 ; System.out.println( "l= " +l ); System.out.println( "r= " +r ); // creation of dp table dp = new pair[ 20 ][ 2 ][ 2 ][ 2 ]; // call function pair ans = solve(l, r); System.out.println( "Maximum Product: " +ans.first); System.out.println( "Number which gave maximum product: " +ans.second); } } // This code is contributed by Debojyoti Mandal |
Python3
# Python3 program for the above approach # pair of array to store product and number # dp[pos][tight1][tight2][start] dp = [[[[[ 0 , 0 ] for _ in range ( 2 )] for _ in range ( 2 )] for _ in range ( 2 )] for _ in range ( 20 )] def recur(l, r, pos, ta, tb, st): # Base case if pos is equal # to l or r size return # pair:1,"" if (pos = = len (l)) : return ( 1 , "") # look up condition if (dp[pos][ta][tb][st][ 0 ] ! = - 1 ): return dp[pos][ta][tb][st] # Lower bound condition start = ord (l[pos]) - ord ( '0' ) if ta else 0 # Upper bound condition end = ord (r[pos]) - ord ( '0' ) if tb else 9 # To store the maximum product # initially it is set to -1 ans = - 1 # To store the corresponding # number as number is large # so store it as a s = [] for i in range (start,end + 1 ) : # Multiply with this val val = i # check for leading zeroes as 00005 if (st = = 0 and i = = 0 ) : val = 1 # Recursive call for next # position and store it in # a pair first gives # maximum product pair # second gives number which # gave maximum product temp = recur(l, r, pos + 1 , ta & (i = = start),tb & (i = = end), st | i > 0 ) # check if calculated product is greater than # previous calculated ans if (temp[ 0 ] * val > ans) : ans = temp[ 0 ] * val # update only if no leading zeroes # becoz no use to append the leading zeroes if (i = = 0 and st = = 0 ) : s = list (temp[ 1 ]) else : s = list (temp[ 1 ]) s.append( chr ( ord ( '0' ) + i)) s = ''.join(s) # while returning memoize the ans dp[pos][ta][tb][st] = [ans, s] return dp[pos][ta][tb][st] def solve(a, b): # convert l to string L and r to R , # as eger value should be large L = list ( str (a)) R = str (b) # to make the size of s # equal append zeroes in # front of L if ( len (L) < len (R)) : L = L[:: - 1 ] while ( len (L) < len (R)) : L.append( '0' ) L = L[:: - 1 ] L = ''.join(L) # initialize dp # as it is pair of array so memset will not work for i in range ( 20 ) : for j in range ( 2 ) : for k in range ( 2 ) : for l in range ( 2 ): dp[i][j][k][l][ 0 ] = - 1 # as we have to return pair second value # it's that number which gaves maximum product # initially pos=0,ta=1,tb=1,start=0(becoz number is not # started yet) ans = recur(L, R, 0 , 1 , 1 , 0 ) # reverse it becoz we were appending from right to left # in recursive call ans[ 1 ] = ans[ 1 ][:: - 1 ] return [ans[ 0 ], ans[ 1 ]] if __name__ = = '__main__' : # take l and r as input l = 52 ; r = 62 print ( "l=" ,l) print ( "r=" ,r) ans = solve(l, r) print ( "Maximum Product:" ,ans[ 0 ]) print ( "Number which gave maximum product:" ,ans[ 1 ]) |
C#
// C# program for the above approach using System; using System.Collections.Generic; public class Program { // pair of array to store product and number // dp[pos][tight1][tight2][start] static long [,,,] dp = new long [20,2,2,2]; static Tuple< long , string > Recur( string l, string r, int pos, bool ta, bool tb, bool st) { // Base case if pos is equal // to l or r size return // pair{1,""} if (pos == l.Length) { return Tuple.Create< long , string >(1, "" ); } // look up condition if (dp[pos, ta ? 1 : 0, tb ? 1 : 0, st ? 1 : 0] != -1) { return Tuple.Create< long , string >(dp[pos, ta ? 1 : 0, tb ? 1 : 0, st ? 1 : 0], "" ); } // Lower bound condition int start = ta ? l[pos] - '0' : 0; // Upper bound condition int end = tb ? r[pos] - '0' : 9; // To store the maximum product // initially it is set to -1 long ans = -1; // To store the corresponding // number as number is large // so store it as a string string s = "" ; for ( int i = start; i <= end; i++) { // Mutliply with this val int val = i; // check for leading zeroes as 00005 if (st == false && i == 0) { val = 1; } // Recursive call for next // position and store it in // a pair first gives // maximum product pair // second gives number which // gave maximum product Tuple< long , string > temp = Recur(l, r, pos + 1, ta && (i == start), tb && (i == end), st || i > 0); // check if calculated product is greater than // previous calculated ans if (temp.Item1 * val > ans) { ans = temp.Item1 * val; // update string only if no leading zeroes // becoz no use to append the leading zeroes if (i == 0 && st == false ) { s = temp.Item2; } else { s = temp.Item2; s += Convert.ToChar( '0' + i); } } } // while returning memoize the ans dp[pos, ta ? 1 : 0, tb ? 1 : 0, st ? 1 : 0] = ans; return Tuple.Create< long , string >(ans, s); } static Tuple< long , string > Solve( int a, int b) { // convert int l to string L and int r to string R , // as integer value should be large string L = a.ToString(); string R = b.ToString(); // to make the size of strings // equal append zeroes in // front of string L if (L.Length < R.Length) { char [] lArr = L.ToCharArray(); Array.Reverse(lArr); L = new string (lArr); while (L.Length < R.Length) { L += "0" ; } lArr = L.ToCharArray(); Array.Reverse(lArr); L = new string (lArr); } // initialize dp // as it is pair of array so memset will not work for ( int i = 0; i < 20; i++) { for ( int j = 0; j < 2; j++) { for ( int k = 0; k < 2; k++) { for ( int l = 0; l < 2; l++) { dp[i,j,k,l] = -1; } } } } // as we have to return pair second value // it's that number which gaves maximum product // initially pos=0,ta=1,tb=1,start=0(becoz number is not // started yet) Tuple< long , string > ans = Recur(L, R, 0, true , true , false ); char [] ansArr = ans.Item2.ToCharArray(); // reverse it becoz we were appending from right to left // in recursive call Array.Reverse(ansArr); ans = Tuple.Create< long , string >(ans.Item1, new string (ansArr)); return ans; } // Driver code public static void Main() { // take l and r as input int l = 52, r = 62; Console.WriteLine( "l= " + l); Console.WriteLine( "r= " + r); Tuple< long , string > ans = Solve(l, r); Console.WriteLine( "Maximum Product: " + ans.Item1); Console.WriteLine( "Number which gave maximum product: " + ans.Item2); } } // This code is contributed by Prince Kumar |
Javascript
// JavaScript program for the above approach. // pair of array to store product and number // dp[pos][tight1][tight2][start] let dp = new Array(20); for (let i = 0; i < 20; i++) { dp[i] = new Array(2); for (let j = 0; j < 2; j++) { dp[i][j] = new Array(2); for (let k = 0; k < 2; k++) { dp[i][j][k] = new Array(2); for (let l = 0; l < 2; l++) { dp[i][j][k][l] = [0, '' ]; } } } } function recur(l, r, pos, ta, tb, st) { // Base case if pos is equal // to l or r size return // pair{1,""} if (pos === l.length) { return [1, '' ]; } // look up condition if (dp[pos][ta][tb][st][0] !== 0) { return dp[pos][ta][tb][st]; } const start = ta ? parseInt(l[pos]) : 0; const end = tb ? parseInt(r[pos]) : 9; let ans = -1; let s = '' ; for (let i = start; i <= end; i++) { let val = i; if (st === 0 && i === 0) { val = 1; } // Recursive call for next // position and store it in // a pair first gives // maximum product pair // second gives number which // gave maximum product const temp = recur(l, r, pos + 1, ta & (i === start), tb & (i === end), st | i > 0); if (temp[0] * val > ans) { ans = temp[0] * val; // update string only if no leading zeroes // becoz no use to append the leading zeroes if (i === 0 && st === 0) { s = temp[1]; } else { s = temp[1] + i; } } } dp[pos][ta][tb][st] = [ans, s]; return dp[pos][ta][tb][st]; } function solve(a, b) { // convert int l to string L and int r to string R , // as integer value should be large const L = a.toString().split( '' ); const R = b.toString(); // to make the size of strings // equal append zeroes in // front of string L if (L.length < R.length) { while (L.length < R.length) { L.unshift( '0' ); } } // initialize dp // as it is pair of array so memset will not work for (let i = 0; i < 20; i++) { for (let j = 0; j < 2; j++) { for (let k = 0; k < 2; k++) { for (let l = 0; l < 2; l++) { dp[i][j][k][l][0] = 0; } } } } // as we have to return pair second value // it's that number which gaves maximum product // initially pos=0,ta=1,tb=1,start=0(becoz number is not // started yet) const ans = recur(L, R, 0, 1, 1, 0); return [ans[0], ans[1].split(' ').reverse().join(' ')]; } const l = 52, r = 62; console.log( "l=" , l); console.log( "r=" , r); const ans = solve(l, r); console.log( "Maximum Product:" , ans[0]); console.log( "Number which gave maximum product:" , ans[1]); |
l= 52 r= 62 Maximum Product: 45 Number which gave maximum product: 59
Time Complexity: O(logN), where N is the maximum number between L and R.
Auxiliary Space: O(logN)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!