Given an unsorted array of size n. Array elements are in the range of 1 to n. One number from set {1, 2, …n} is missing and one number occurs twice in the array. Find these two numbers.
Examples:
Input: arr[] = {3, 1, 3}
Output: Missing = 2, Repeating = 3
Explanation: In the array, 2 is missing and 3 occurs twice
Input: arr[] = {4, 3, 6, 2, 1, 1}
Output: Missing = 5, Repeating = 1
Below are various methods to solve the problems:
Method 1 (Use count array)
Approach:
- Create a temp array temp[] of size n with all initial values as 0.
- Traverse the input array arr[], and do the following for each arr[i]
- if(temp[arr[i]-1] == 0), set temp[arr[i]-1] = 1;
- if(temp[arr[i]-1] == 1) output “arr[i]” //repeating number
- Traverse temp[] and output ‘i+1’ corresponding to the element of array temp[] having value as 0. (This is the missing number)
Note that, we use ‘arr[i]-1’ as the corresponding element to the ‘arr[i]’ in temp[] array, as indexing in an array starts from 0 to n-1 and the input array arr[] has numbers from 1 to n.
C++
#include <bits/stdc++.h>
using namespace std;
void printTwoElements( int arr[], int n)
{
int temp[n] = {};
int repeatingNumber=-1;
int missingNumber=-1;
for ( int i = 0; i < n; i++) {
temp[arr[i]-1]++;
if (temp[arr[i] - 1] > 1) {
repeatingNumber = arr[i];
}
}
for ( int i = 0; i < n; i++) {
if (temp[i] == 0) {
missingNumber = i + 1;
break ;
}
}
cout << "The repeating number is " << repeatingNumber<< "."
<< endl;
cout << "The missing number is " << missingNumber<< "."
<< endl;
}
int main()
{
int arr[] = { 7, 3, 4, 5, 5, 6, 2 };
int n = sizeof (arr) / sizeof (arr[0]);
printTwoElements(arr, n);
return 0;
}
|
Java
import java.io.*;
class Main {
static void printTwoElements( int [] arr, int n)
{
int [] temp
= new int [n];
int repeatingNumber = - 1 ;
int missingNumber = - 1 ;
for ( int i = 0 ; i < n; i++) {
temp[arr[i] - 1 ]++;
if (temp[arr[i] - 1 ] > 1 ) {
repeatingNumber = arr[i];
}
}
for ( int i = 0 ; i < n; i++) {
if (temp[i] == 0 ) {
missingNumber = i + 1 ;
break ;
}
}
System.out.println( "The repeating number is "
+ repeatingNumber + "." );
System.out.println( "The missing number is "
+ missingNumber + "." );
}
public static void main(String[] args)
{
int [] arr = { 7 , 3 , 4 , 5 , 5 , 6 , 2 };
int n = arr.length;
printTwoElements(arr, n);
}
}
|
Python3
def printTwoElements(arr):
n = len (arr)
temp = [ 0 ] * n
repeatingNumber = - 1
missingNumber = - 1
for i in range (n):
temp[arr[i] - 1 ] + = 1
if temp[arr[i] - 1 ] > 1 :
repeatingNumber = arr[i]
for i in range (n):
if temp[i] = = 0 :
missingNumber = i + 1
break
print ( "The repeating number is" , repeatingNumber, "." )
print ( "The missing number is" , missingNumber, "." )
arr = [ 7 , 3 , 4 , 5 , 5 , 6 , 2 ]
printTwoElements(arr)
|
C#
using System;
public class Program
{
public static void printTwoElements( int [] arr, int n)
{
int [] temp = new int [n];
int repeatingNumber = -1;
int missingNumber = -1;
for ( int i = 0; i < n; i++)
{
temp[arr[i] - 1]++;
if (temp[arr[i] - 1] > 1)
{
repeatingNumber = arr[i];
}
}
for ( int i = 0; i < n; i++)
{
if (temp[i] == 0)
{
missingNumber = i + 1;
break ;
}
}
Console.WriteLine( "The repeating number is " + repeatingNumber + "." );
Console.WriteLine( "The missing number is " + missingNumber + "." );
}
public static void Main()
{
int [] arr = { 7, 3, 4, 5, 5, 6, 2 };
int n = arr.Length;
printTwoElements(arr, n);
}
}
|
Javascript
function printTwoElements(arr) {
const n = arr.length;
const temp = Array(n).fill(0);
let repeatingNumber = -1;
let missingNumber = -1;
for (let i = 0; i < n; i++) {
temp[arr[i] - 1]++;
if (temp[arr[i] - 1] > 1) {
repeatingNumber = arr[i];
}
}
for (let i = 0; i < n; i++) {
if (temp[i] === 0) {
missingNumber = i + 1;
break ;
}
}
console.log(`The repeating number is ${repeatingNumber}.`);
console.log(`The missing number is ${missingNumber}.`);
}
const arr = [7, 3, 4, 5, 5, 6, 2];
printTwoElements(arr);
|
Output
The repeating number is 5.
The missing number is 1.
Time Complexity: O(n)
Auxiliary Space: O(n)
Method 2 (Use elements as Index and mark the visited places)
Approach:
Traverse the array. While traversing, use the absolute value of every element as an index and make the value at this index negative to mark it visited. If something is already marked negative then this is the repeating element. To find the missing, traverse the array again and look for a positive value.
C++
#include <bits/stdc++.h>
using namespace std;
void printTwoElements( int arr[], int size)
{
int i;
cout << "The repeating element is " ;
for (i = 0; i < size; i++) {
if (arr[ abs (arr[i]) - 1] > 0)
arr[ abs (arr[i]) - 1] = -arr[ abs (arr[i]) - 1];
else
cout << abs (arr[i]) << "\n" ;
}
cout << "and the missing element is " ;
for (i = 0; i < size; i++) {
if (arr[i] > 0)
cout << (i + 1);
}
}
int main()
{
int arr[] = { 7, 3, 4, 5, 5, 6, 2 };
int n = sizeof (arr) / sizeof (arr[0]);
printTwoElements(arr, n);
}
|
C
#include <stdio.h>
#include <stdlib.h>
void printTwoElements( int arr[], int size)
{
int i;
printf ( "\nThe repeating element is " );
for (i = 0; i < size; i++) {
if (arr[ abs (arr[i]) - 1] > 0)
arr[ abs (arr[i]) - 1] = -arr[ abs (arr[i]) - 1];
else
printf ( " %d " , abs (arr[i]));
}
printf ( "\nand the missing element is " );
for (i = 0; i < size; i++) {
if (arr[i] > 0)
printf ( "%d" , i + 1);
}
}
int main()
{
int arr[] = { 7, 3, 4, 5, 5, 6, 2 };
int n = sizeof (arr) / sizeof (arr[0]);
printTwoElements(arr, n);
return 0;
}
|
Java
import java.io.*;
class GFG {
static void printTwoElements( int arr[], int size)
{
int i;
System.out.print( "The repeating element is " );
for (i = 0 ; i < size; i++) {
int abs_val = Math.abs(arr[i]);
if (arr[abs_val - 1 ] > 0 )
arr[abs_val - 1 ] = -arr[abs_val - 1 ];
else
System.out.println(abs_val);
}
System.out.print( "and the missing element is " );
for (i = 0 ; i < size; i++) {
if (arr[i] > 0 )
System.out.println(i + 1 );
}
}
public static void main(String[] args)
{
int arr[] = { 7 , 3 , 4 , 5 , 5 , 6 , 2 };
int n = arr.length;
printTwoElements(arr, n);
}
}
|
Python3
def printTwoElements( arr, size):
for i in range (size):
if arr[ abs (arr[i]) - 1 ] > 0 :
arr[ abs (arr[i]) - 1 ] = - arr[ abs (arr[i]) - 1 ]
else :
print ( "The repeating element is " , abs (arr[i]))
for i in range (size):
if arr[i]> 0 :
print ( "and the missing element is " , i + 1 )
arr = [ 7 , 3 , 4 , 5 , 5 , 6 , 2 ]
n = len (arr)
printTwoElements(arr, n)
|
C#
using System;
class GFG {
static void printTwoElements( int [] arr, int size)
{
int i;
Console.Write( "The repeating element is " );
for (i = 0; i < size; i++) {
int abs_val = Math.Abs(arr[i]);
if (arr[abs_val - 1] > 0)
arr[abs_val - 1] = -arr[abs_val - 1];
else
Console.WriteLine(abs_val);
}
Console.Write( "and the missing element is " );
for (i = 0; i < size; i++) {
if (arr[i] > 0)
Console.WriteLine(i + 1);
}
}
public static void Main()
{
int [] arr = { 7, 3, 4, 5, 5, 6, 2 };
int n = arr.Length;
printTwoElements(arr, n);
}
}
|
Javascript
<script>
function printTwoElements(arr,size)
{
var i;
document.write( "The repeating element is " );
for (i = 0; i < size; i++)
{
var abs_value = Math.abs(arr[i]);
if (arr[abs_value - 1] > 0)
arr[abs_value - 1] = -arr[abs_value - 1];
else
document.write( abs_value);
}
document.write( "<br> and the missing element is " );
for (i = 0; i < size; i++)
{
if (arr[i] > 0)
document.write (i + 1);
}
}
arr = new Array ( 7, 3, 4, 5, 5, 6, 2 );
n = arr.length;
printTwoElements(arr, n);
</script>
|
PHP
<?php
function printTwoElements( $arr , $size )
{
$i ;
echo "The repeating element is" , " " ;
for ( $i = 0; $i < $size ; $i ++)
{
if ( $arr [ abs ( $arr [ $i ]) - 1] > 0)
$arr [ abs ( $arr [ $i ]) - 1] =
- $arr [ abs ( $arr [ $i ]) - 1];
else
echo ( abs ( $arr [ $i ]));
}
echo "\nand the missing element is " ;
for ( $i = 0; $i < $size ; $i ++)
{
if ( $arr [ $i ] > 0)
echo ( $i + 1);
}
}
$arr = array (7, 3, 4, 5, 5, 6, 2);
$n = count ( $arr );
printTwoElements( $arr , $n );
?>
|
Output
The repeating element is 5
and the missing element is 1
Time Complexity: O(n)
Auxiliary Space: O(1) as it is using constant variables
Thanks to Manish Mishra for suggesting this method.
Method 3 (Make two equations)
Approach:
- Let x be the missing and y be the repeating element.
- Get the sum of all numbers using formula S = n(n+1)/2 – x + y
- Get product of all numbers using formula P = 1*2*3*…*n * y / x
- The above two steps give us two equations, we can solve the equations and get the values of x and y.
Time Complexity: O(n)
Thanks to disappearedng for suggesting this solution.
Note: This method can cause arithmetic overflow as we calculate the product and sum of all array elements.
Method 4 (Use XOR)
Approach:
- Let x and y be the desired output elements.
- Calculate the XOR of all the array elements.
xor1 = arr[0]^arr[1]^arr[2]…..arr[n-1]
- XOR the result with all numbers from 1 to n
xor1 = xor1^1^2^…..^n
- In the result xor1, all elements would nullify each other except x and y. All the bits that are set in xor1 will be set in either x or y. So if we take any set bit (We have chosen the rightmost set bit in code) of xor1 and divide the elements of the array in two sets – one set of elements with the same bit set and another set with the same bit not set. By doing so, we will get x in one set and y in another set. Now if we do XOR of all the elements in the first set, we will get x, and by doing the same in the other set we will get y.
Below is the implementation of the above approach:
C++
#include <iostream>
#include <vector>
using namespace std;
int x, y;
void getTwoElements(vector< int >& arr, int n)
{
int xor1 = 0;
int set_bit_no;
x = 0;
y = 0;
xor1 = arr[0];
for ( int i = 1; i < n; i++)
xor1 = xor1 ^ arr[i];
for ( int i = 1; i <= n; i++)
xor1 = xor1 ^ i;
set_bit_no = xor1 & ~(xor1 - 1);
for ( int i = 0; i < n; i++) {
if ((arr[i] & set_bit_no) != 0)
x = x
^ arr[i];
else
y = y ^ arr[i];
}
for ( int i = 1; i <= n; i++) {
if ((i & set_bit_no) != 0)
x = x ^ i;
else
y = y ^ i;
}
}
int main()
{
vector< int > arr = { 1, 3, 4, 5, 1, 6, 2 };
int n = arr.size();
getTwoElements(arr, n);
cout << "The missing element is " << x
<< " and the repeating number is " << y << endl;
return 0;
}
|
C
#include <stdio.h>
#include <stdlib.h>
void getTwoElements( int arr[], int n, int * x, int * y)
{
int xor1;
int set_bit_no;
int i;
*x = 0;
*y = 0;
xor1 = arr[0];
for (i = 1; i < n; i++)
xor1 = xor1 ^ arr[i];
for (i = 1; i <= n; i++)
xor1 = xor1 ^ i;
set_bit_no = xor1 & ~(xor1 - 1);
for (i = 0; i < n; i++) {
if (arr[i] & set_bit_no)
*x = *x ^ arr[i];
else
*y = *y ^ arr[i];
}
for (i = 1; i <= n; i++) {
if (i & set_bit_no)
*x = *x ^ i;
else
*y = *y ^ i;
}
}
int main()
{
int arr[] = { 1, 3, 4, 5, 5, 6, 2 };
int * x = ( int *) malloc ( sizeof ( int ));
int * y = ( int *) malloc ( sizeof ( int ));
int n = sizeof (arr) / sizeof (arr[0]);
getTwoElements(arr, n, x, y);
printf ( " The missing element is %d"
" and the repeating number"
" is %d" ,
*x, *y);
getchar ();
}
|
Java
import java.io.*;
class GFG {
static int x, y;
static void getTwoElements( int arr[], int n)
{
int xor1;
int set_bit_no;
int i;
x = 0 ;
y = 0 ;
xor1 = arr[ 0 ];
for (i = 1 ; i < n; i++)
xor1 = xor1 ^ arr[i];
for (i = 1 ; i <= n; i++)
xor1 = xor1 ^ i;
set_bit_no = xor1 & ~(xor1 - 1 );
for (i = 0 ; i < n; i++) {
if ((arr[i] & set_bit_no) != 0 )
x = x ^ arr[i];
else
y = y ^ arr[i];
}
for (i = 1 ; i <= n; i++) {
if ((i & set_bit_no) != 0 )
x = x ^ i;
else
y = y ^ i;
}
}
public static void main(String[] args)
{
int arr[] = { 1 , 3 , 4 , 5 , 1 , 6 , 2 };
int n = arr.length;
getTwoElements(arr, n);
System.out.println( " The missing element is "
+ x + "and the "
+ "repeating number is "
+ y);
}
}
|
Python3
def getTwoElements(arr, n):
global x, y
x = 0
y = 0
xor1 = arr[ 0 ]
for i in range ( 1 , n):
xor1 = xor1 ^ arr[i]
for i in range ( 1 , n + 1 ):
xor1 = xor1 ^ i
set_bit_no = xor1 & ~(xor1 - 1 )
for i in range (n):
if (arr[i] & set_bit_no) ! = 0 :
x = x ^ arr[i]
else :
y = y ^ arr[i]
for i in range ( 1 , n + 1 ):
if (i & set_bit_no) ! = 0 :
x = x ^ i
else :
y = y ^ i
arr = [ 1 , 3 , 4 , 5 , 5 , 6 , 2 ]
n = len (arr)
getTwoElements(arr, n)
print ( "The missing element is" , x,
"and the repeating number is" , y)
|
C#
using System;
class GFG {
static int x, y;
static void getTwoElements( int [] arr, int n)
{
int xor1;
int set_bit_no;
int i;
x = 0;
y = 0;
xor1 = arr[0];
for (i = 1; i < n; i++)
xor1 = xor1 ^ arr[i];
for (i = 1; i <= n; i++)
xor1 = xor1 ^ i;
set_bit_no = xor1 & ~(xor1 - 1);
for (i = 0; i < n; i++) {
if ((arr[i] & set_bit_no) != 0)
x = x ^ arr[i];
else
y = y ^ arr[i];
}
for (i = 1; i <= n; i++) {
if ((i & set_bit_no) != 0)
x = x ^ i;
else
y = y ^ i;
}
}
public static void Main()
{
int [] arr = { 1, 3, 4, 5, 1, 6, 2 };
int n = arr.Length;
getTwoElements(arr, n);
Console.Write( " The missing element is "
+ x + "and the "
+ "repeating number is "
+ y);
}
}
|
Javascript
let x, y;
function getTwoElements(arr, n)
{
let xor1;
let set_bit_no;
let i;
x = 0;
y = 0;
xor1 = arr[0];
for (i = 1; i < n; i++)
xor1 = xor1 ^ arr[i];
for (i = 1; i <= n; i++)
xor1 = xor1 ^ i;
set_bit_no = xor1 & ~(xor1 - 1);
for (i = 0; i < n; i++) {
if ((arr[i] & set_bit_no) != 0)
x = x ^ arr[i];
else
y = y ^ arr[i];
}
for (i = 1; i <= n; i++) {
if ((i & set_bit_no) != 0)
x = x ^ i;
else
y = y ^ i;
}
}
let arr = [ 1, 3, 4, 5, 1, 6, 2 ];
let n = arr.length;
getTwoElements(arr, n);
console.log( " The missing element is "
+ x + " and the "
+ "repeating number is "
+ y);
|
PHP
<?php
function getTwoElements(& $arr , $n )
{
$xor1 ;
$set_bit_no ;
$i ;
$x = 0;
$y = 0;
$xor1 = $arr [0];
for ( $i = 1; $i < $n ; $i ++)
$xor1 = $xor1 ^ $arr [ $i ];
for ( $i = 1; $i <= $n ; $i ++)
$xor1 = $xor1 ^ $i ;
$set_bit_no = $xor1 & ~( $xor1 - 1);
for ( $i = 0; $i < $n ; $i ++)
{
if (( $arr [ $i ] & $set_bit_no ) != 0)
$x = $x ^ $arr [ $i ];
else
$y = $y ^ $arr [ $i ];
}
for ( $i = 1; $i <= $n ; $i ++)
{
if (( $i & $set_bit_no ) != 0)
$x = $x ^ $i ;
else
$y = $y ^ $i ;
}
echo ( "The missing element is " . $x .
" and the repeating number is " . $y );
}
$arr = array ( 1, 3, 4, 5, 1, 6, 2 );
$n = sizeof( $arr );
getTwoElements( $arr , $n );
|
Output
The missing element is 7 and the repeating number is 5
Time Complexity: O(n)
Auxiliary Space: O(1) as it is using constant space if the input array is excluded
This method doesn’t cause overflow, but it doesn’t tell which one occurs twice and which one is missing. We can add one more step that checks which one is missing and which one is repeating. This can be easily done in O(n) time.
Method 5 (Use a Map)
Approach:
This method involves creating a Hashtable with the help of Map. In this, the elements are mapped to their natural index. In this process, if an element is mapped twice, then it is the repeating element. And if an element’s mapping is not there, then it is the missing element.
Below is the implementation of the above approach:
C++
#include <iostream>
#include <unordered_map>
using namespace std;
int main()
{
int arr[] = { 4, 3, 6, 2, 1, 1 };
int n = 6;
unordered_map< int , bool > numberMap;
for ( int i : arr)
{
if (numberMap.find(i) ==
numberMap.end())
{
numberMap[i] = true ;
}
else
{
cout << "Repeating = " << i;
break ;
}
}
cout << endl;
for ( int i = 1; i <= n; i++)
{
if (numberMap.find(i) ==
numberMap.end())
{
cout << "Missing = " << i;
break ;
}
}
return 0;
}
|
Java
import java.util.*;
public class Test1 {
public static void main(String[] args)
{
int [] arr = { 4 , 3 , 6 , 2 , 1 , 1 };
Map<Integer, Boolean> numberMap
= new HashMap<>();
int max = arr.length;
for (Integer i : arr) {
if (numberMap.get(i) == null ) {
numberMap.put(i, true );
}
else {
System.out.println( "Repeating = " + i);
}
}
for ( int i = 1 ; i <= max; i++) {
if (numberMap.get(i) == null ) {
System.out.println( "Missing = " + i);
}
}
}
}
|
Python3
def main():
arr = [ 4 , 3 , 6 , 2 , 1 , 1 ]
numberMap = {}
max = len (arr)
for i in arr:
if not i in numberMap:
numberMap[i] = True
else :
print ( "Repeating =" , i)
for i in range ( 1 , max + 1 ):
if not i in numberMap:
print ( "Missing =" , i)
main()
|
C#
using System;
using System.Collections.Generic;
class GFG
{
public static void Main(String[] args)
{
int [] arr = { 4, 3, 6, 2, 1, 1 };
Dictionary< int , Boolean> numberMap =
new Dictionary< int , Boolean>();
int max = arr.Length;
foreach ( int i in arr)
{
if (!numberMap.ContainsKey(i))
{
numberMap.Add(i, true );
}
else
{
Console.WriteLine( "Repeating = " + i);
}
}
for ( int i = 1; i <= max; i++)
{
if (!numberMap.ContainsKey(i))
{
Console.WriteLine( "Missing = " + i);
}
}
}
}
|
Javascript
<script>
let arr = [ 4, 3, 6, 2, 1, 1 ];
let n = 6;
let numberMap = new Map();
for (let i of arr)
{
if (numberMap.has(i) == false ) {
numberMap.set(i, true );
}
else
{
document.write( "Repeating = " ,i);
}
}
document.write( "</br>" );
for (let i = 1; i <= n; i++)
{
if (numberMap.has(i) == false ) {
document.write( "Missing = " ,i);
}
}
</script>
|
Output
Repeating = 1
Missing = 5
Time Complexity: O(N)
Auxiliary Space: O(N)
Method 6 (Make two equations using sum and sum of squares)
Approach:
- Let x be the missing and y be the repeating element.
- Let N is the size of the array.
- Get the sum of all numbers using the formula S = N(N+1)/2
- Get the sum of square of all numbers using formula Sum_Sq = N(N+1)(2N+1)/6
- Iterate through a loop from i=1….N
- S -= A[i]
- Sum_Sq -= (A[i]*A[i])
- It will give two equations
x-y = S – (1)
x^2 – y^2 = Sum_sq
x+ y = (Sum_sq/S) – (2)
C++
#include <bits/stdc++.h>
using namespace std;
vector< int >repeatedNumber( const vector< int > &A) {
long long int len = A.size();
long long int Sum_N = (len * (len+1) ) /2, Sum_NSq = (len * (len +1) *(2*len +1) )/6;
long long int missingNumber=0, repeating=0;
for ( int i=0;i<A.size(); i++){
Sum_N -= ( long long int )A[i];
Sum_NSq -= ( long long int )A[i]*( long long int )A[i];
}
missingNumber = (Sum_N + Sum_NSq/Sum_N)/2;
repeating= missingNumber - Sum_N;
vector < int > ans;
ans.push_back(repeating);
ans.push_back(missingNumber);
return ans;
}
int main( void ){
std::vector< int > v = {4, 3, 6, 2, 1, 6,7};
vector< int > res = repeatedNumber(v);
for ( int x: res){
cout<< x<< " " ;
}
cout<<endl;
}
|
Java
import java.util.*;
import java.math.BigInteger;
class GFG
{
static Vector<Integer> repeatedNumber( int [] a)
{
BigInteger n=BigInteger.valueOf(a.length);
BigInteger s=BigInteger.valueOf( 0 );
BigInteger ss=BigInteger.valueOf( 0 );
for ( int x : a)
{
s= s.add(BigInteger.valueOf(x));
ss= ss.add(BigInteger.valueOf(x).multiply(BigInteger.valueOf(x)));
}
BigInteger as= n.multiply(n.add(BigInteger.valueOf( 1 ))).divide(BigInteger.valueOf( 2 ));
BigInteger ass= as.multiply(BigInteger.valueOf( 2 ).multiply(n).add(BigInteger.valueOf( 1 ))).divide(BigInteger.valueOf( 3 ));
BigInteger sub=as.subtract(s);
BigInteger add=(ass.subtract(ss)).divide(sub);
int b = sub.add(add).divide(BigInteger.valueOf( 2 )).intValue();
int A = BigInteger.valueOf(b).subtract(sub).intValue();
Vector<Integer> ans = new Vector<>();
ans.add(A);
ans.add(b);
return ans;
}
public static void main(String[] args)
{
int [] v = { 4 , 3 , 6 , 2 , 1 , 6 , 7 };
Vector<Integer> res = repeatedNumber(v);
for ( int x : res)
{
System.out.print(x + " " );
}
}
}
|
Python3
def repeatedNumber(A):
length = len (A)
Sum_N = (length * (length + 1 )) / / 2
Sum_NSq = ((length * (length + 1 ) *
( 2 * length + 1 )) / / 6 )
missingNumber, repeating = 0 , 0
for i in range ( len (A)):
Sum_N - = A[i]
Sum_NSq - = A[i] * A[i]
missingNumber = (Sum_N + Sum_NSq / /
Sum_N) / / 2
repeating = missingNumber - Sum_N
ans = []
ans.append(repeating)
ans.append(missingNumber)
return ans
v = [ 4 , 3 , 6 , 2 , 1 , 6 , 7 ]
res = repeatedNumber(v)
for i in res:
print (i, end = " " )
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static List< int > repeatedNumber( int [] A)
{
int len = A.Length;
int Sum_N = (len * (len + 1)) / 2;
int Sum_NSq = (len * (len + 1) *
(2 * len + 1)) / 6;
int missingNumber = 0, repeating = 0;
for ( int i = 0; i < A.Length; i++)
{
Sum_N -= A[i];
Sum_NSq -= A[i] * A[i];
}
missingNumber = (Sum_N + Sum_NSq /
Sum_N) / 2;
repeating = missingNumber - Sum_N;
List< int > ans = new List< int >();
ans.Add(repeating);
ans.Add(missingNumber);
return ans;
}
public static void Main(String[] args)
{
int [] v = { 4, 3, 6, 2, 1, 6, 7 };
List< int > res = repeatedNumber(v);
foreach ( int x in res)
{
Console.Write(x + " " );
}
}
}
|
Javascript
<script>
function repeatedNumber(A){
let length = A.length
let Sum_N = Math.floor((length * (length + 1)) / 2)
let Sum_NSq = Math.floor((length * (length + 1) * (2 * length + 1))/6)
let missingNumber = 0
let repeating = 0
for (let i=0;i<A.length;i++){
Sum_N -= A[i]
Sum_NSq -= A[i] * A[i]
}
missingNumber = Math.floor(Math.floor(Sum_N + Sum_NSq / Sum_N) / 2)
repeating = missingNumber - Sum_N
let ans = []
ans.push(repeating)
ans.push(missingNumber)
return ans
}
let v = [ 4, 3, 6, 2, 1, 6, 7 ]
let res = repeatedNumber(v)
for (let i of res)
document.write(i, " " )
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!