Monday, November 18, 2024
Google search engine
HomeData Modelling & AIFind the ln(X) and log10X with the help of expansion

Find the ln(X) and log10X with the help of expansion

Given a positive number x, the task is to find the natural log (ln) and log to the base 10 (log10) of this number with the help of expansion.

Example:  

Input: x = 5
Output: ln 5.000 = 1.609
        log10 5.000 = 0.699

Input: x = 10
Output: ln 10.000 = 2.303
        log10 10.000 = 1.000

Approach:  

  • The expansion of natural logarithm of x (ln x) is:
     

  • Therefore this series can be summed up as: 
     

  • Hence a function can be made to evaluate the nth term of the sequence for 1 ? x ? n 
  • Now to calculate log10 x, below formula can be used: 
     

Below is the implementation of the above approach: 

C++




// CPP code to Find the ln x and
// log<sub>10</sub> x with the help of expansion
 
#include <cmath>
#include <iomanip>
#include <iostream>
 
using namespace std;
 
// Function to calculate ln x using expansion
double calculateLnx(double n)
{
 
    double num, mul, cal, sum = 0;
    num = (n - 1) / (n + 1);
 
    // terminating value of the loop
    // can be increased to improve the precision
    for (int i = 1; i <= 1000; i++) {
        mul = (2 * i) - 1;
        cal = pow(num, mul);
        cal = cal / mul;
        sum = sum + cal;
    }
    sum = 2 * sum;
    return sum;
}
 
// Function to calculate log10 x
double calculateLogx(double lnx)
{
    return (lnx / 2.303);
}
 
// Driver Code
int main()
{
 
    double lnx, logx, n = 5;
    lnx = calculateLnx(n);
    logx = calculateLogx(lnx);
 
    // setprecision(3) is used to display
    // the output up to 3 decimal places
 
    cout << fixed << setprecision(3)
         << "ln " << n << " = "
         << lnx << endl;
    cout << fixed << setprecision(3)
         << "log10 " << n << " = "
         << logx << endl;
}


Java




// Java code to Find the ln x and
// log<sub>10</sub> x with the help of expansion
import java.io.*;
 
class GFG
{
     
// Function to calculate ln x using expansion
static double calculateLnx(double n)
{
    double num, mul, cal, sum = 0;
    num = (n - 1) / (n + 1);
 
    // terminating value of the loop
    // can be increased to improve the precision
    for (int i = 1; i <= 1000; i++)
    {
        mul = (2 * i) - 1;
        cal = Math.pow(num, mul);
        cal = cal / mul;
        sum = sum + cal;
    }
    sum = 2 * sum;
    return sum;
}
 
// Function to calculate log10 x
static double calculateLogx(double lnx)
{
    return (lnx / 2.303);
}
 
// Driver Code
public static void main (String[] args)
{
    double lnx, logx, n = 5;
    lnx = calculateLnx(n);
    logx = calculateLogx(lnx);
     
    // setprecision(3) is used to display
    // the output up to 3 decimal places
     
    System.out.println ("ln " + n + " = " + lnx );
    System.out.println ("log10 " + n + " = "+ logx );
}
}
 
// This code is contributed by ajit


Python3




# Python 3 code to Find the ln x and
# log<sub>10</sub> x with the help of expansion
# Function to calculate ln x using expansion
from math import pow
def calculateLnx(n):
    sum = 0
    num = (n - 1) / (n + 1)
 
    # terminating value of the loop
    # can be increased to improve the precision
    for i in range(1, 1001, 1):
        mul = (2 * i) - 1
        cal = pow(num, mul)
        cal = cal / mul
        sum = sum + cal
 
    sum = 2 * sum
    return sum
 
# Function to calculate log10 x
def calculateLogx(lnx):
    return (lnx / 2.303)
 
# Driver Code
if __name__ == '__main__':
    n = 5
    lnx = calculateLnx(n)
    logx = calculateLogx(lnx)
 
    # setprecision(3) is used to display
    # the output up to 3 decimal places
 
    print("ln", "{0:.3f}".format(n),
           "=", "{0:.3f}".format(lnx))
    print("log10", "{0:.3f}".format(n),
              "=", "{0:.3f}".format(logx))
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# code to Find the ln x and
// log<sub>10</sub> x with the help of expansion
using System;
     
class GFG
{
     
// Function to calculate ln x using expansion
static double calculateLnx(double n)
{
    double num, mul, cal, sum = 0;
    num = (n - 1) / (n + 1);
 
    // terminating value of the loop
    // can be increased to improve the precision
    for (int i = 1; i <= 1000; i++)
    {
        mul = (2 * i) - 1;
        cal = Math.Pow(num, mul);
        cal = cal / mul;
        sum = sum + cal;
    }
    sum = 2 * sum;
    return sum;
}
 
// Function to calculate log10 x
static double calculateLogx(double lnx)
{
    return (lnx / 2.303);
}
 
// Driver Code
public static void Main (String[] args)
{
    double lnx, logx, n = 5;
    lnx = calculateLnx(n);
    logx = calculateLogx(lnx);
     
    // setprecision(3) is used to display
    // the output up to 3 decimal places
     
    Console.WriteLine("ln " + n + " = " + lnx );
    Console.WriteLine("log10 " + n + " = "+ logx );
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript code to Find the ln x and
// log<sub>10</sub> x with the help of expansion
 
// Function to calculate ln x using expansion
function calculateLnx(n)
{
    let num, mul, cal, sum = 0;
    num = (n - 1) / (n + 1);
 
    // Terminating value of the loop
    // can be increased to improve the precision
    for(let i = 1; i <= 1000; i++)
    {
        mul = (2 * i) - 1;
        cal = Math.pow(num, mul);
        cal = cal / mul;
        sum = sum + cal;
    }
    sum = 2 * sum;
    return sum;
}
 
// Function to calculate log10 x
function calculateLogx(lnx)
{
    return (lnx / 2.303);
}
 
// Driver Code
let lnx, logx, n = 5;
lnx = calculateLnx(n);
logx = calculateLogx(lnx);
 
// setprecision(3) is used to display
// the output up to 3 decimal places
document.write("ln " + n + " = " + lnx + "<br>");
document.write("log10 " + n + " = "+ logx + "<br>");
 
// This code is contributed by souravmahato348
 
</script>


Output

ln 5.000 = 1.609
log10 5.000 = 0.699

Time complexity: O(1000), as the loop iterates 1000 times.
Auxiliary Space: O(1), 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments