Given a perimeter P and area A, the task is to calculate the maximum volume that can be made in form of cuboid from the given perimeter and surface area.
Examples :
Input: P = 24, A = 24 Output: 8 Input: P = 20, A = 14 Output: 3
Approach: For a given perimeter of cuboid we have P = 4(l+b+h) —(i),
for given area of cuboid we have A = 2 (lb+bh+lh) —(ii).
Volume of cuboid is V = lbh
Volume is dependent on 3 variables l, b, h. Lets make it dependent on only length.
as V = lbh,
=> V = l (A/2-(lb+lh)) {from equation (ii)}
=> V = lA/2 – l2(b+h)
=> V = lA/2 – l2(P/4-l) {from equation (i)}
=> V = lA/2 – l2P/4 + l3 —-(iii)
Now differentiate V w.r.t l for finding maximum of volume.
dV/dl = A/2 – lP/2 + 3l2
After solving the quadratic in l we have l = (P – (P2-24A)1/2) / 12
Substituting value of l in (iii), we can easily find the maximum volume.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // function to return maximum volume float maxVol( float P, float A) { // calculate length float l = (P - sqrt (P * P - 24 * A)) / 12; // calculate volume float V = l * (A / 2.0 - l * (P / 4.0 - l)); // return result return V; } // Driver code int main() { float P = 20, A = 16; // Function call cout << maxVol(P, A); return 0; } |
Java
// Java implementation of the above approach import java.util.*; class Geeks { // function to return maximum volume static float maxVol( float P, float A) { // calculate length float l = ( float )(P - Math.sqrt(P * P - 24 * A)) / 12 ; // calculate volume float V = ( float )(l * (A / 2.0 - l * (P / 4.0 - l))); // return result return V; } // Driver code public static void main(String args[]) { float P = 20 , A = 16 ; // Function call System.out.println(maxVol(P, A)); } } // This code is contributed by Kirti_Mangal |
Python3
# Python3 implementation of the # above approach from math import sqrt # function to return maximum volume def maxVol(P, A): # calculate length l = (P - sqrt(P * P - 24 * A)) / 12 # calculate volume V = l * (A / 2.0 - l * (P / 4.0 - l)) # return result return V # Driver code if __name__ = = '__main__' : P = 20 A = 16 # Function call print (maxVol(P, A)) # This code is contributed # by Surendra_Gangwar |
C#
// C# implementation of the above approach using System; class GFG { // function to return maximum volume static float maxVol( float P, float A) { // calculate length float l = ( float )(P - Math.Sqrt(P * P - 24 * A)) / 12; // calculate volume float V = ( float )(l * (A / 2.0 - l * (P / 4.0 - l))); // return result return V; } // Driver code public static void Main() { float P = 20, A = 16; // Function call Console.WriteLine(maxVol(P, A)); } } // This code is contributed // by Akanksha Rai |
PHP
<?php // PHP implementation of the above approach // function to return maximum volume function maxVol( $P , $A ) { // calculate length $l = ( $P - sqrt( $P * $P - 24 * $A )) / 12; // calculate volume $V = $l * ( $A / 2.0 - $l * ( $P / 4.0 - $l )); // return result return $V ; } // Driver code $P = 20; $A = 16; // Function call echo maxVol( $P , $A ); // This code is contributed by mits ?> |
Javascript
<script> // javascript implementation of the above approach // function to return maximum volume function maxVol( P, A) { // calculate length let l = (P - Math.sqrt(P * P - 24 * A)) / 12; // calculate volume let V = l * (A / 2.0 - l * (P / 4.0 - l)); // return result return V; } // Driver code let P = 20, A = 16; // Function call document.write(maxVol(P, A).toFixed(5)); // This code is contributed by aashish1995 </script> |
4.14815
Time Complexity: O(logn) as sqrt function is being used, time complexity of sqrt is logn
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!