Given an array of integers arr[], The task is to find all its subsets. The subset can not contain duplicate elements, so any repeated subset should be considered only once in the output.
Examples:
Input: S = {1, 2, 2}
Output: {}, {1}, {2}, {1, 2}, {2, 2}, {1, 2, 2}
Explanation: The total subsets of given set are – {}, {1}, {2}, {2}, {1, 2}, {1, 2}, {2, 2}, {1, 2, 2}
Here {2} and {1, 2} are repeated twice so they are considered only once in the outputInput: S = {1, 2}
Output: {}, {1}, {2}, {1, 2}
Explanation: The total subsets of given set are – {}, {1}, {2}, {1, 2}
BRUTE METHOD:
Intuition:
- We do this problem by using the backtracking approach.
- we declare a arraylist to store all the subsets generated.
- We sort the array in order to skip repeated subsets as it should be unique.
- then we pick a particular element or not pick from the array and we generate the subsets.
- atlast we add it in the final list and return it.
Implementation:
C++
// C++ program to find all subsets of given set. Any // repeated subset is considered only once in the output #include <iostream> #include <vector> #include <algorithm> using namespace std; void findSubsets( int ind, vector< int >& nums, vector< int >& ds, vector<vector< int >>& ansList) { ansList.push_back(ds); for ( int i = ind; i < nums.size(); i++) { if (i != ind && nums[i] == nums[i - 1]) continue ; ds.push_back(nums[i]); findSubsets(i + 1, nums, ds, ansList); ds.pop_back(); } } vector<vector< int >> AllSubsets( int arr[], int n) { vector< int > nums(arr, arr + n); vector< int > ds; sort(nums.begin(), nums.end()); vector<vector< int >> ansList; findSubsets(0, nums, ds, ansList); return ansList; } int main() { int set[] = { 10, 12, 12 }; vector<vector< int >> subsets = AllSubsets(set, 3); for ( auto subset : subsets) { cout << "[" ; for ( int i = 0; i < subset.size(); i++) { cout << subset[i]; if (i < subset.size() - 1) { cout << ", " ; } } cout << "], " ; } return 0; } |
Java
// Java program to find all subsets of given set. Any // repeated subset is considered only once in the output import java.io.*; import java.util.*; class GFG { public static void findSubsets( int ind, int [] nums, ArrayList<Integer> ds, ArrayList<ArrayList<Integer> > ansList) { ansList.add( new ArrayList<>(ds)); for ( int i = ind; i < nums.length; i++) { if (i != ind && nums[i] == nums[i - 1 ]) continue ; ds.add(nums[i]); findSubsets(i + 1 , nums, ds, ansList); ds.remove(ds.size() - 1 ); } } public static ArrayList<ArrayList<Integer> > AllSubsets( int arr[], int n) { // your code here Arrays.sort(arr); ArrayList<ArrayList<Integer> > ansList = new ArrayList<>(); findSubsets( 0 , arr, new ArrayList<>(), ansList); return ansList; } public static void main(String[] args) { int [] set = { 10 , 12 , 12 }; System.out.println(AllSubsets(set, 3 )); } } // This code is contributed by Raunak Singh |
Python3
# Python program to find all subsets of given set. Any # repeated subset is considered only once in the output def find_subsets(ind, nums, ds, ans_list): ans_list.append( list (ds)) for i in range (ind, len (nums)): if i ! = ind and nums[i] = = nums[i - 1 ]: continue ds.append(nums[i]) find_subsets(i + 1 , nums, ds, ans_list) ds.pop() def all_subsets(arr): nums = sorted (arr) ans_list = [] find_subsets( 0 , nums, [], ans_list) return ans_list if __name__ = = "__main__" : set = [ 10 , 12 , 12 ] subsets = all_subsets( set ) for subset in subsets: print (subset, end = ", " ) |
C#
// C# program to find all subsets of given set. Any // repeated subset is considered only once in the output using System; using System.Collections.Generic; public class GFG { static void FindSubsets( int ind, int [] nums, List< int > ds, List<List< int >> ansList) { ansList.Add( new List< int >(ds)); for ( int i = ind; i < nums.Length; i++) { if (i != ind && nums[i] == nums[i - 1]) continue ; ds.Add(nums[i]); FindSubsets(i + 1, nums, ds, ansList); ds.RemoveAt(ds.Count - 1); } } static List<List< int >> AllSubsets( int [] arr) { Array.Sort(arr); List<List< int >> ansList = new List<List< int >>(); FindSubsets(0, arr, new List< int >(), ansList); return ansList; } public static void Main() { int [] set = { 10, 12, 12 }; List<List< int >> subsets = AllSubsets( set ); foreach (List< int > subset in subsets) { Console.Write( "[" ); for ( int i = 0; i < subset.Count; i++) { Console.Write(subset[i]); if (i < subset.Count - 1) { Console.Write( ", " ); } } Console.Write( "], " ); } } } |
Javascript
// Javascript program to find all subsets of given set. Any // repeated subset is considered only once in the output function findSubsets(ind, nums, ds, ansList) { ansList.push([...ds]); for (let i = ind; i < nums.length; i++) { if (i !== ind && nums[i] === nums[i - 1]) { continue ; } ds.push(nums[i]); findSubsets(i + 1, nums, ds, ansList); ds.pop(); } } function allSubsets(arr) { const nums = arr.slice().sort((a, b) => a - b); const ansList = []; findSubsets(0, nums, [], ansList); return ansList; } const set = [10, 12, 12]; const subsets = allSubsets(set); for (const subset of subsets) { console.log(subset); } |
[[], [10], [10, 12], [10, 12, 12], [12], [12, 12]]
Time Complexity: O(2^N * N) since we are generating every subset
Auxiliary Space: O(2^N)
Prerequisite: Power Set
Approach: Below is the idea to solve the problem:
The idea is to use a bit-mask pattern to generate all the combinations as discussed in post. To avoid printing duplicate subsets construct a string out of given subset such that subsets having similar elements will result in same string. Maintain a list of such unique strings and finally decode all such string to print its individual elements.
Illustration :
S = {1, 2, 2}
The binary digits from 0 to 7 are
0 –> 000 –> number formed with no setbits –> { }
1 –> 001 –> number formed with setbit at position 0 –> { 1 }
2 –> 010 –> number formed with setbit at position 1 –> { 2 }
3 –> 011 –> number formed with setbit at position 0 and 1 –> { 1 , 2 }
4 –> 100 –> number formed with setbit at position 2 –> { 2 }
5 –> 101 –> number formed with setbit at position 0 and 2 –> { 1 , 2}
6 –> 110 –> number formed with setbit at position 1 and 2 –> { 2 , 2}
7 –> 111 –> number formed with setbit at position 0 , 1 and 2 –> {1 , 2 , 2}After removing duplicates final result will be { }, { 1 }, { 2 }, { 1 , 2 }, { 2 , 2 }, { 1 , 2 , 2}
Note: This method will only work on sorted arrays.
Follow the below steps to Implement the idea:
- Initialize a variable pow_set_size as 2 raise to size of array and a vector of vector ans to store all subsets.
- Iterate over all bitmasks from 0 to pow_set_size – 1.
- For every bitmask include the elements of array of indices where bits are set into a subset vector.
- If this subset doesn’t already exist then push the subset in the ans vector.
- Return ans.
Below is the implementation of the above approach:
C++14
// C++ program to find all subsets of given set. Any // repeated subset is considered only once in the output #include <bits/stdc++.h> using namespace std; // Function to find all subsets of given set. Any repeated // subset is considered only once in the output vector<vector< int > > findPowerSet(vector< int >& nums) { // Size of array to set bit int bits = nums.size(); // Total number of subsets = pow(2, // sizeof(arr)) unsigned int pow_set_size = pow (2, bits); // Sort to avoid adding permutation of // the substring sort(nums.begin(), nums.end()); vector<vector< int > > ans; // To store subset as a list to // avoid adding exact duplicates vector<string> list; // Counter 000..0 to 111..1 for ( int counter = 0; counter < pow_set_size; counter++) { vector< int > subset; string temp = "" ; // Check for the current bit in the counter for ( int j = 0; j < bits; j++) { if (counter & (1 << j)) { subset.push_back(nums[j]); // Add special character to separate // integers temp += to_string(nums[j]) + '$' ; } } if (find(list.begin(), list.end(), temp) == list.end()) { ans.push_back(subset); list.push_back(temp); } } return ans; } // Driver code int main() { vector< int > arr{ 10, 12, 12 }; vector<vector< int > > power_set = findPowerSet(arr); for ( int i = 0; i < power_set.size(); i++) { for ( int j = 0; j < power_set[i].size(); j++) cout << power_set[i][j] << " " ; cout << endl; } return 0; } // this code is contributed by prophet1999 |
Java
// Java program to find all subsets of given set. Any // repeated subset is considered only once in the output import java.io.*; import java.util.*; public class GFG { // Function to find all subsets of given set. Any // repeated subset is considered only once in the output static void printPowerSet( int [] set, int set_size) { ArrayList<String> subset = new ArrayList<String>(); /*set_size of power set of a set with set_size n is (2**n -1)*/ long pow_set_size = ( long )Math.pow( 2 , set_size); int counter, j; /*Run from counter 000..0 to 111..1*/ for (counter = 0 ; counter < pow_set_size; counter++) { String temp = "" ; for (j = 0 ; j < set_size; j++) { /* Check if jth bit in the counter is set If set then print jth element from set */ if ((counter & ( 1 << j)) > 0 ) temp += (Integer.toString(set[j]) + '$' ); } if (!subset.contains(temp) && temp.length() > 0 ) { subset.add(temp); } } for (String s : subset) { s = s.replace( '$' , ' ' ); System.out.println(s); } } // Driver program to test printPowerSet public static void main(String[] args) { int [] set = { 10 , 12 , 12 }; printPowerSet(set, 3 ); } } // This code is contributed by Aditya Patil. |
Python3
# Python3 program to find all subsets of # given set. Any repeated subset is # considered only once in the output def printPowerSet(arr, n): # Function to find all subsets of given set. # Any repeated subset is considered only # once in the output _list = [] # Run counter i from 000..0 to 111..1 for i in range ( 2 * * n): subset = "" # consider each element in the set for j in range (n): # Check if jth bit in the i is set. # If the bit is set, we consider # jth element from set if (i & ( 1 << j)) ! = 0 : subset + = str (arr[j]) + "|" # if subset is encountered for the first time # If we use set<string>, we can directly insert if subset not in _list and len (subset) > 0 : _list.append(subset) # consider every subset for subset in _list: # split the subset and print its elements arr = subset.split( '|' ) for string in arr: print (string, end = " " ) print () # Driver Code if __name__ = = '__main__' : arr = [ 10 , 12 , 12 ] n = len (arr) printPowerSet(arr, n) # This code is contributed by vibhu4agarwal |
C#
// C# program to find all subsets of given set. Any // repeated subset is considered only once in the output using System; using System.Collections.Generic; public class GFG { // Function to find all subsets of given set. Any // repeated subset is considered only once in the output static void printPowerSet( int [] set , int set_size) { List< string > subset = new List< string >(); /*set_size of power set of a set with set_size n is (2**n -1)*/ long pow_set_size = ( long )Math.Pow(2, set_size); int counter, j; /*Run from counter 000..0 to 111..1*/ for (counter = 0; counter < pow_set_size; counter++) { string temp = "" ; for (j = 0; j < set_size; j++) { /* Check if jth bit in the counter is set If set then print jth element from set */ if ((counter & (1 << j)) > 0) temp += (Convert.ToString( set [j]) + ' ' ); } if (!subset.Contains(temp) && temp.Length > 0) { subset.Add(temp); } } foreach ( string s in subset) { s.Replace( '$' , ' ' ); Console.WriteLine(s); } } // Driver program to test printPowerSet public static void Main( string [] args) { int [] set = { 10, 12, 12 }; printPowerSet( set , 3); } } // This code is contributed by ishankhandelwals. |
Javascript
<script> // JavaScript program to find all subsets of given set. Any // repeated subset is considered only once in the output // Function to find all subsets of given set. Any repeated // subset is considered only once in the output const findPowerSet = (nums) => { let bits = nums.length; // size of array to set bit let pow_set_size = Math.pow(2, bits); // total number of subsets = pow(2, sizeof(arr)) nums.sort(); // sort to avoid adding permutation of the substring let ans = []; let list = []; // to store subset as a list to avoid adding exact duplicates // counter 000..0 to 111..1 for (let counter = 0; counter < pow_set_size; counter++) { let subset = []; let temp = "" ; // check for the current bit in the counter for (let j = 0; j < bits; j++) { if (counter & (1 << j)) { subset.push(nums[j]); // add special character to separate integers temp += nums[j].toString() + '$' ; } } if (list.indexOf(temp) == -1) { ans.push(subset); list.push(temp); } } return ans; } // Driver code let arr = [10, 12, 12]; let power_set = findPowerSet(arr); for (let i = 0; i < power_set.length; i++) { for (let j = 0; j < power_set[i].length; j++) document.write(`${power_set[i][j]} `); document.write( "<br/>" ); } // This code is contributed by rakeshsahni </script> |
10 12 10 12 12 12 10 12 12
Time Complexity: O(N*2N)
Auxiliary Space: O(N*N)
Analysis:
If is the total number of steps in the code, then the loop to generate all binary combinations runs till, and then the inner loop run till log(i).
Hence, , Raising to the power of two on both sides
Using log on both sides and applying Sterling’s approximation,
Hence the time complexity is
Find all distinct subsets of a given set using BitMasking Approach using Backtracking
Refer to the article https://www.geeksforgeeks.org/backtracking-to-find-all-subsets/ to solve the problem using the backtracking approach.
This article is contributed by Aditya Goel. If you like neveropen and would like to contribute, you can also write an article using contribute.neveropen.org or mail your article to contribute@neveropen.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!