Given a 2D square matrix, find the sum of elements in Principal and Secondary diagonals. For example, consider the following 4 X 4 input matrix.
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33
The primary diagonal is formed by the elements A00, A11, A22, A33.
- Condition for Principal Diagonal: The row-column condition is row = column.
The secondary diagonal is formed by the elements A03, A12, A21, A30.
- Condition for Secondary Diagonal: The row-column condition is row = numberOfRows – column -1.
Examples :
Input :
4
1 2 3 4
4 3 2 1
7 8 9 6
6 5 4 3
Output :
Principal Diagonal: 16
Secondary Diagonal: 20
Input :
3
1 1 1
1 1 1
1 1 1
Output :
Principal Diagonal: 3
Secondary Diagonal: 3
Method 1: In this method, we use two loops i.e. a loop for columns and a loop for rows and in the inner loop we check for the condition stated above:
Implementation:
C
#include <stdio.h>
const int M = 4;
const int N = 4;
void printDiagonalSums( int mat[M][N])
{
int principal = 0, secondary = 0;
for ( int i = 0; i < M; i++)
{
for ( int j = 0; j < N; j++)
{
if (i == j)
principal += mat[i][j];
if ((i + j) == (N - 1))
secondary += mat[i][j];
}
}
printf ( "%s" , "Principal Diagonal:" );
printf ( "%d\n" , principal);
printf ( "%s" , "Secondary Diagonal:" );
printf ( "%d\n" , secondary);
}
int main()
{
int a[][4] = {{1, 2, 3, 4},
{5, 6, 7, 8},
{1, 2, 3, 4},
{5, 6, 7, 8}};
printDiagonalSums(a);
return 0;
}
|
C++
#include <bits/stdc++.h>
using namespace std;
const int MAX = 100;
void printDiagonalSums( int mat[][MAX], int n)
{
int principal = 0, secondary = 0;
for ( int i = 0; i < n; i++) {
for ( int j = 0; j < n; j++) {
if (i == j)
principal += mat[i][j];
if ((i + j) == (n - 1))
secondary += mat[i][j];
}
}
cout << "Principal Diagonal:" << principal << endl;
cout << "Secondary Diagonal:" << secondary << endl;
}
int main()
{
int a[][MAX] = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 },
{ 1, 2, 3, 4 }, { 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
return 0;
}
|
Java
import java.io.*;
public class GFG {
static void printDiagonalSums( int [][]mat,
int n)
{
int principal = 0 , secondary = 0 ;
for ( int i = 0 ; i < n; i++) {
for ( int j = 0 ; j < n; j++) {
if (i == j)
principal += mat[i][j];
if ((i + j) == (n - 1 ))
secondary += mat[i][j];
}
}
System.out.println( "Principal Diagonal:"
+ principal);
System.out.println( "Secondary Diagonal:"
+ secondary);
}
static public void main (String[] args)
{
int [][]a = { { 1 , 2 , 3 , 4 },
{ 5 , 6 , 7 , 8 },
{ 1 , 2 , 3 , 4 },
{ 5 , 6 , 7 , 8 } };
printDiagonalSums(a, 4 );
}
}
|
Python3
MAX = 100
def printDiagonalSums(mat, n):
principal = 0
secondary = 0 ;
for i in range ( 0 , n):
for j in range ( 0 , n):
if (i = = j):
principal + = mat[i][j]
if ((i + j) = = (n - 1 )):
secondary + = mat[i][j]
print ( "Principal Diagonal:" , principal)
print ( "Secondary Diagonal:" , secondary)
a = [[ 1 , 2 , 3 , 4 ],
[ 5 , 6 , 7 , 8 ],
[ 1 , 2 , 3 , 4 ],
[ 5 , 6 , 7 , 8 ]]
printDiagonalSums(a, 4 )
|
C#
using System;
public class GFG {
static void printDiagonalSums( int [,]mat,
int n)
{
int principal = 0, secondary = 0;
for ( int i = 0; i < n; i++) {
for ( int j = 0; j < n; j++) {
if (i == j)
principal += mat[i,j];
if ((i + j) == (n - 1))
secondary += mat[i,j];
}
}
Console.WriteLine( "Principal Diagonal:"
+ principal);
Console.WriteLine( "Secondary Diagonal:"
+ secondary);
}
static public void Main ()
{
int [,]a = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
}
}
|
PHP
<?php
$MAX = 100;
function printDiagonalSums( $mat , $n )
{
global $MAX ;
$principal = 0;
$secondary = 0;
for ( $i = 0; $i < $n ; $i ++)
{
for ( $j = 0; $j < $n ; $j ++)
{
if ( $i == $j )
$principal += $mat [ $i ][ $j ];
if (( $i + $j ) == ( $n - 1))
$secondary += $mat [ $i ][ $j ];
}
}
echo "Principal Diagonal:" ,
$principal , "\n" ;
echo "Secondary Diagonal:" ,
$secondary , "\n" ;
}
$a = array ( array ( 1, 2, 3, 4 ),
array ( 5, 6, 7, 8 ),
array ( 1, 2, 3, 4 ),
array ( 5, 6, 7, 8 ));
printDiagonalSums( $a , 4);
?>
|
Javascript
<script>
const MAX = 100;
void printDiagonalSums(mat, n)
{
let principal = 0, secondary = 0;
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
if (i == j)
principal += mat[i][j];
if ((i + j) == (n - 1))
secondary += mat[i][j];
}
}
document.write( "Principal Diagonal:" + principal + "<br>" );
document.write( "Secondary Diagonal:" + secondary + "<br>" );
}
let a = [ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ],
[ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ];
printDiagonalSums(a, 4);
</script>
|
Output
Principal Diagonal:18
Secondary Diagonal:18
Time Complexity: O(N*N), as we are using nested loops to traverse N*N times.
Auxiliary Space: O(1), as we are not using any extra space.
Method 2( Efficient Approach): In this method, we use one loop i.e. a loop for calculating the sum of both the principal and secondary diagonals:
Implementation:
C
#include <stdio.h>
#include <stdlib.h>
const int M = 4;
const int N = 4;
void printDiagonalSums( int mat[M][N])
{
int principal = 0, secondary = 0;
for ( int i = 0; i < N; i++)
{
principal += mat[i][i];
secondary += mat[i][N - i - 1];
}
printf ( "%s" , "Principal Diagonal:" );
printf ( "%d\n" , principal);
printf ( "%s" , "Secondary Diagonal:" );
printf ( "%d\n" , secondary);
}
int main()
{
int a[4][4] = {{1, 2, 3, 4},
{5, 6, 7, 8},
{1, 2, 3, 4},
{5, 6, 7, 8}};
printDiagonalSums(a);
return 0;
}
|
C++
#include <bits/stdc++.h>
using namespace std;
const int MAX = 100;
void printDiagonalSums( int mat[][MAX], int n)
{
int principal = 0, secondary = 0;
for ( int i = 0; i < n; i++) {
principal += mat[i][i];
secondary += mat[i][n - i - 1];
}
cout << "Principal Diagonal:" << principal << endl;
cout << "Secondary Diagonal:" << secondary << endl;
}
int main()
{
int a[][MAX] = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 },
{ 1, 2, 3, 4 }, { 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
return 0;
}
|
Java
import java.io.*;
public class GFG {
static void printDiagonalSums( int [][]mat,
int n)
{
int principal = 0 , secondary = 0 ;
for ( int i = 0 ; i < n; i++) {
principal += mat[i][i];
secondary += mat[i][n - i - 1 ];
}
System.out.println( "Principal Diagonal:"
+ principal);
System.out.println( "Secondary Diagonal:"
+ secondary);
}
static public void main (String[] args)
{
int [][]a = { { 1 , 2 , 3 , 4 },
{ 5 , 6 , 7 , 8 },
{ 1 , 2 , 3 , 4 },
{ 5 , 6 , 7 , 8 } };
printDiagonalSums(a, 4 );
}
}
|
Python3
MAX = 100
def printDiagonalSums(mat, n):
principal = 0
secondary = 0
for i in range ( 0 , n):
principal + = mat[i][i]
secondary + = mat[i][n - i - 1 ]
print ( "Principal Diagonal:" , principal)
print ( "Secondary Diagonal:" , secondary)
a = [[ 1 , 2 , 3 , 4 ],
[ 5 , 6 , 7 , 8 ],
[ 1 , 2 , 3 , 4 ],
[ 5 , 6 , 7 , 8 ]]
printDiagonalSums(a, 4 )
|
C#
using System;
public class GFG {
static void printDiagonalSums( int [,]mat,
int n)
{
int principal = 0, secondary = 0;
for ( int i = 0; i < n; i++) {
principal += mat[i,i];
secondary += mat[i,n - i - 1];
}
Console.WriteLine( "Principal Diagonal:"
+ principal);
Console.WriteLine( "Secondary Diagonal:"
+ secondary);
}
static public void Main ()
{
int [,]a = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
}
}
|
PHP
<?php
$MAX = 100;
function printDiagonalSums( $mat , $n )
{
global $MAX ;
$principal = 0; $secondary = 0;
for ( $i = 0; $i < $n ; $i ++)
{
$principal += $mat [ $i ][ $i ];
$secondary += $mat [ $i ][ $n - $i - 1];
}
echo "Principal Diagonal:" ,
$principal , "\n" ;
echo "Secondary Diagonal:" ,
$secondary , "\n" ;
}
$a = array ( array (1, 2, 3, 4),
array (5, 6, 7, 8),
array (1, 2, 3, 4),
array (5, 6, 7, 8));
printDiagonalSums( $a , 4);
?>
|
Javascript
<script>
function printDiagonalSums(mat,n)
{
let principal = 0, secondary = 0;
for (let i = 0; i < n; i++) {
principal += mat[i][i];
secondary += mat[i][n - i - 1];
}
document.write( "Principal Diagonal:"
+ principal+ "<br>" );
document.write( "Secondary Diagonal:"
+ secondary);
}
let a = [[ 1, 2, 3, 4 ],
[5, 6, 7, 8 ],
[ 1, 2, 3, 4 ],
[ 5, 6, 7, 8 ]];
printDiagonalSums(a, 4);
</script>
|
Output
Principal Diagonal:18
Secondary Diagonal:18
Time Complexity: O(N), as we are using a loop to traverse N times.
Auxiliary Space: O(1), as we are not using any extra space.
This article is contributed by Mohak Agrawal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!