Monday, November 18, 2024
Google search engine
HomeData Modelling & AICount the number of nodes at a given level in a tree...

Count the number of nodes at a given level in a tree using DFS

Given an integer l and a tree represented as an undirected graph rooted at vertex 0. The task is to print the number of nodes present at level l.

Examples: 

Input: l = 2 
 

Output:

We have already discussed the BFS approach, in this post we will solve it using DFS.

Approach: The idea is to traverse the graph in a DFS manner. Take two variables, count and curr_level. Whenever the curr_level = l increment the value of the count.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Class to represent a graph
class Graph {
 
    // No. of vertices
    int V;
 
    // Pointer to an array containing
    // adjacency lists
    list<int>* adj;
 
    // A function used by NumOfNodes
    void DFS(vector<bool>& visited, int src, int& curr_level,
             int level, int& NumberOfNodes);
 
public:
    // Constructor
    Graph(int V);
 
    // Function to add an edge to graph
    void addEdge(int src, int des);
 
    // Returns the no. of nodes
    int NumOfNodes(int level);
};
 
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
 
void Graph::addEdge(int src, int des)
{
    adj[src].push_back(des);
    adj[des].push_back(src);
}
 
// DFS function to keep track of
// number of nodes
void Graph::DFS(vector<bool>& visited, int src, int& curr_level,
                int level, int& NumberOfNodes)
{
    // Mark the current vertex as visited
    visited[src] = true;
 
    // If current level is equal
    // to the given level, increment
    // the no. of nodes
    if (level == curr_level) {
        NumberOfNodes++;
    }
    else if (level < curr_level)
        return;
    else {
        list<int>::iterator i;
 
        // Recur for the vertices
        // adjacent to the current vertex
        for (i = adj[src].begin(); i != adj[src].end(); i++) {
            if (!visited[*i]) {
                curr_level++;
                DFS(visited, *i, curr_level, level, NumberOfNodes);
            }
        }
    }
    curr_level--;
}
 
// Function to return the number of nodes
int Graph::NumOfNodes(int level)
{
    // To keep track of current level
    int curr_level = 0;
 
    // For keeping track of visited
    // nodes in DFS
    vector<bool> visited(V, false);
 
    // To store count of nodes at a
    // given level
    int NumberOfNodes = 0;
 
    DFS(visited, 0, curr_level, level, NumberOfNodes);
 
    return NumberOfNodes;
}
 
// Driver code
int main()
{
    int V = 8;
 
    Graph g(8);
    g.addEdge(0, 1);
    g.addEdge(0, 4);
    g.addEdge(0, 7);
    g.addEdge(4, 6);
    g.addEdge(4, 5);
    g.addEdge(4, 2);
    g.addEdge(7, 3);
 
    int level = 2;
 
    cout << g.NumOfNodes(level);
 
    return 0;
}


Python3




# Python3 implementation of the approach
  
# Class to represent a graph
class Graph:
     
    def __init__(self, V):
         
        # No. of vertices
        self.V = V
         
        # Pointer to an array containing
        # adjacency lists
        self.adj = [[] for i in range(self.V)]
         
    def addEdge(self, src, des):
         
        self.adj[src].append(des)
        self.adj[des].append(src)
         
    # DFS function to keep track of
    # number of nodes
    def DFS(self, visited, src, curr_level,
            level, NumberOfNodes):
 
        # Mark the current vertex as visited
        visited[src] = True
  
        # If current level is equal
        # to the given level, increment
        # the no. of nodes
        if (level == curr_level):
            NumberOfNodes += 1
     
        elif (level < curr_level):
            return
        else:
             
            # Recur for the vertices
            # adjacent to the current vertex
            for i in self.adj[src]:
         
                if (not visited[i]):
                    curr_level += 1
                    curr_level, NumberOfNodes = self.DFS(
                        visited, i, curr_level,
                        level, NumberOfNodes)
     
        curr_level -= 1
         
        return curr_level, NumberOfNodes
 
    # Function to return the number of nodes
    def NumOfNodes(self, level):
 
        # To keep track of current level
        curr_level = 0
  
        # For keeping track of visited
        # nodes in DFS
        visited = [False for i in range(self.V)]
     
        # To store count of nodes at a
        # given level
        NumberOfNodes = 0
  
        curr_level, NumberOfNodes = self.DFS(
            visited, 0, curr_level,
            level, NumberOfNodes)
  
        return NumberOfNodes
 
# Driver code
if __name__=='__main__':
 
    V = 8
  
    g = Graph(8)
    g.addEdge(0, 1)
    g.addEdge(0, 4)
    g.addEdge(0, 7)
    g.addEdge(4, 6)
    g.addEdge(4, 5)
    g.addEdge(4, 2)
    g.addEdge(7, 3)
  
    level = 2
  
    print(g.NumOfNodes(level))
  
# This code is contributed by pratham76


Javascript




// JavaScript implementation of the approach
 
// Class to represent a graph
class Graph {
constructor(V) {
// No. of vertices
this.V = V;
 
// Pointer to an array containing adjacency lists
this.adj = Array.from({ length: this.V }, () => []);
}
 
addEdge(src, des) {
this.adj[src].push(des);
this.adj[des].push(src);
}
 
// DFS function to keep track of number of nodes
DFS(visited, src, curr_level, level, NumberOfNodes) {
 
// Mark the current vertex as visited
visited[src] = true;
 
 
// If current level is equal to the given level, increment the no. of nodes
if (level == curr_level) {
  NumberOfNodes += 1;
} else if (level < curr_level) {
  return;
} else {
 
  // Recur for the vertices adjacent to the current vertex
  for (const i of this.adj[src]) {
    if (!visited[i]) {
      curr_level += 1;
      [curr_level, NumberOfNodes] = this.DFS(
        visited,
        i,
        curr_level,
        level,
        NumberOfNodes
      );
    }
  }
}
curr_level -= 1;
return [curr_level, NumberOfNodes];
}
 
// Function to return the number of nodes
NumOfNodes(level)
{
 
// To keep track of current level
let curr_level = 0;
 
 
// For keeping track of visited nodes in DFS
let visited = new Array(this.V).fill(false);
 
// To store count of nodes at a given level
let NumberOfNodes = 0;
 
[curr_level, NumberOfNodes] = this.DFS(
  visited,
  0,
  curr_level,
  level,
  NumberOfNodes
);
 
return NumberOfNodes;
}
}
 
// Driver code
const g = new Graph(8);
g.addEdge(0, 1);
g.addEdge(0, 4);
g.addEdge(0, 7);
g.addEdge(4, 6);
g.addEdge(4, 5);
g.addEdge(4, 2);
g.addEdge(7, 3);
 
const level = 2;
console.log(g.NumOfNodes(level));
 
// This code is contributed by lokeshpotta20.


C#




using System;
using System.Collections.Generic;
 
// Class to represent a graph
class Graph
{
    // No. of vertices
    int V;
 
    // Pointer to an array containing adjacency lists
    List<int>[] adj;
 
    // A function used by NumOfNodes
    void DFS(List<bool> visited, int src, ref int curr_level,
             int level, ref int NumberOfNodes)
    {
        // Mark the current vertex as visited
        visited[src] = true;
 
        // If current level is equal to the given level, increment the no. of nodes
        if (level == curr_level)
        {
            NumberOfNodes++;
        }
        else if (level < curr_level)
        {
            return;
        }
        else
        {
            List<int>.Enumerator i;
 
            // Recur for the vertices adjacent to the current vertex
            i = adj[src].GetEnumerator();
            while (i.MoveNext())
            {
                if (!visited[i.Current])
                {
                    curr_level++;
                    DFS(visited, i.Current, ref curr_level, level, ref NumberOfNodes);
                }
            }
        }
        curr_level--;
    }
 
    public Graph(int V)
    {
        this.V = V;
        adj = new List<int>[V];
        for (int i = 0; i < V; ++i)
        {
            adj[i] = new List<int>();
        }
    }
 
    public void addEdge(int src, int des)
    {
        adj[src].Add(des);
        adj[des].Add(src);
    }
 
    public int NumOfNodes(int level)
    {
        // To keep track of current level
        int curr_level = 0;
 
        // For keeping track of visited nodes in DFS
        List<bool> visited = new List<bool>(V);
        for (int i = 0; i < V; ++i)
        {
            visited.Add(false);
        }
 
        // To store count of nodes at a given level
        int NumberOfNodes = 0;
 
        DFS(visited, 0, ref curr_level, level, ref NumberOfNodes);
 
        return NumberOfNodes;
    }
}
 
class MainClass
{
    public static void Main()
    {
        int V = 8;
 
        Graph g = new Graph(8);
        g.addEdge(0, 1);
        g.addEdge(0, 4);
        g.addEdge(0, 7);
        g.addEdge(4, 6);
        g.addEdge(4, 5);
        g.addEdge(4, 2);
        g.addEdge(7, 3);
 
        int level = 2;
 
        Console.WriteLine(g.NumOfNodes(level));
    }
}
 
// This code is contributed by Prince Kumar


Output

4

Complexity Analysis:

  • Time Complexity : O(N), where N is the total number of nodes in the graph.
  • Auxiliary Space: O(N) 
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments