We are given an array arr of n element. We need to count number of non-empty subsequences such that these individual subsequences have same values of bitwise AND, OR and XOR. For example, we need to count a subsequence (x, y, z) if (x | y | z) is equal to (x & y & z) and (x ^ y ^ z). For a single element subsequence, we consider the element itself as result of XOR, AND and OR. Therefore all single-element subsequences are always counted as part of result.
Examples:
Input : a = [1, 3, 7] Output : 3 Explanation: There are 7 non empty subsequence . subsequence OR AND XOR {1} 1 1 1 {3} 3 3 3 {7} 7 7 7 {1, 3} 3 1 2 {1, 7} 7 1 6 {3, 7} 7 3 4 {1, 3, 7} 7 1 5 Out of 7, there are 3 subsequences {1} {3} {7} which have same values of AND, OR and XOR. Input : a[] = [0, 0, 0] Output : 7 Explanation: All 7 non empty subsequences have same values of AND, OR and XOR. Input : a[] = [2, 2, 2, 3, 4] Output : 6 Explanation: subsequence {2}, {2}, {2}, {2, 2, 2}, {3}, {4} have same values of AND, OR and XOR.
1) If there are n occurrences of zeroes in the given array, then will be 2n – 1 subsequences contributed by these zeroes.
2) If there are n occurrences of a non-zero element x, then there will be 2n-1 subsequences contributed by occurrences of this element. Please note that, in case of non-zero elements, only odd number of occurrences can cause same results for bitwise operators.
Find count of each element in the array then apply the above formulas.
C++
#include <bits/stdc++.h> using namespace std; // function for finding count of possible subsequence int countSubseq( int arr[], int n) { int count = 0; // creating a map to count the frequency of each element unordered_map< int , int > mp; // store frequency of each element for ( int i = 0; i < n; i++) mp[arr[i]]++; // iterate through the map for ( auto i : mp) { // add all possible combination for key equal zero if (i.first == 0) count += pow (2, i.second) - 1; // add all (odd number of elements) possible // combination for key other than zero else count += pow (2, i.second - 1); } return count; } // driver function int main() { int arr[] = { 2, 2, 2, 5, 6 }; int n = sizeof (arr) / sizeof (arr[0]); cout << countSubseq(arr, n); return 0; } |
Java
import java .io.*; import java.util.*; class GFG { // function for finding count of possible subsequence static int countSubseq( int arr[], int n) { int count = 0 ; // creating a map to count the frequency of each element HashMap<Integer,Integer>mp= new HashMap<Integer,Integer>(); // store frequency of each element for ( int i = 0 ; i < n; i++) if (mp.containsKey(arr[i])) mp.put(arr[i],mp.get(arr[i])+ 1 ); else mp.put(arr[i], 1 ); // iterate through the map for (Map.Entry<Integer,Integer>entry:mp.entrySet()) { // add all possible combination for key equal zero if (entry.getKey() == 0 ) count += Math.pow( 2 , entry.getValue()) - 1 ; // add all (odd number of elements) possible // combination for key other than zero else count += Math.pow( 2 , entry.getValue()- 1 ); } return count; } // driver function public static void main(String[] args) { int arr[] = { 2 , 2 , 2 , 5 , 6 }; int n=arr.length; System.out.println(countSubseq(arr, n)); } } // This code is contributed by apurva raj |
C#
using System; using System.Collections.Generic; class GFG{ // function for finding count of possible subsequence static int countSubseq( int []arr, int n) { int count = 0; // creating a map to count the frequency of each element Dictionary< int , int > mp = new Dictionary< int , int >(); // store frequency of each element for ( int i = 0; i < n; i++) { if (mp.ContainsKey(arr[i])) { var val = mp[arr[i]]; mp.Remove(arr[i]); mp.Add(arr[i], val + 1); } else { mp.Add(arr[i], 1); } } // iterate through the map foreach (KeyValuePair< int , int > entry in mp) { // add all possible combination for key equal zero if (entry.Key == 0) count += ( int )(Math.Pow(2, entry.Value - 1)); // add all (odd number of elements) possible // combination for key other than zero else count += ( int )(Math.Pow(2, entry.Value - 1)); } return count; } // Driver function public static void Main(String []args) { int []arr = { 2, 2, 2, 5, 6 }; int n = arr.Length; Console.WriteLine(countSubseq(arr, n)); } } // This code is contributed by shivanisinghss2110 |
Python3
# function for finding count of possible subsequence def countSubseq(arr, n): count = 0 # creating a map to count the frequency of each element mp = {} # store frequency of each element for x in arr: if x in mp.keys(): mp[x] + = 1 else : mp[x] = 1 # iterate through the map for i in mp.keys(): # add all possible combination for key equal zero if (i = = 0 ): count + = pow ( 2 , mp[i]) - 1 # add all (odd number of elements) possible # combination for key other than zero else : count + = pow ( 2 , mp[i] - 1 ) return count # Driver function arr = [ 2 , 2 , 2 , 5 , 6 ] n = len (arr) print (countSubseq(arr, n)) # This code is contributed by apurva raj |
Javascript
<script> // function for finding count of possible subsequence function countSubseq(arr, n) { let count = 0; // creating a map to count the frequency of each element let mp = new Map(); // store frequency of each element for (let i = 0; i < n; i++){ mp[arr[i]]++; if (mp.has(arr[i])){ mp.set(arr[i], mp.get(arr[i]) + 1) } else { mp.set(arr[i], 1) } } // iterate through the map for (let i of mp) { // add all possible combination for key equal zero if (i[0] == 0) count += Math.pow(2, i[1]) - 1; // add all (odd number of elements) possible // combination for key other than zero else count += Math.pow(2, i[1] - 1); } return count; } // driver function let arr = [ 2, 2, 2, 5, 6 ]; let n = arr.length; document.write(countSubseq(arr, n)); // This code is contributed by _saurabh_jaiswal </script> |
6
Time complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!