Saturday, November 16, 2024
Google search engine
HomeData Modelling & AICount set bits in a range

Count set bits in a range

Given a non-negative number n and two values l and r. The problem is to count the number of set bits in the range l to r in the binary representation of n, i.e, to count set bits from the rightmost lth bit to the rightmost rth bit. 
Constraint: 1 <= l <= r <= number of bits in the binary representation of n.
Examples: 
 

Input : n = 42, l = 2, r = 5
Output : 2
(42)10 = (101010)2
There are '2' set bits in the range 2 to 5.

Input : n = 79, l = 1, r = 4
Output : 4

 

Approach: Following are the steps:
 

  1. Calculate num = ((1 << r) – 1) ^ ((1 << (l-1)) – 1). This will produce a number num having r number of bits and bits in the range l to r are the only set bits.
  2. Count number of set bits in the number (n & num). Refer this post.

 

C++




// C++ implementation to count set bits in the
// given range
#include <bits/stdc++.h>
  
using namespace std;
  
// Function to get no of set bits in the
// binary representation of 'n'
unsigned int countSetBits(int n)
{
    unsigned int count = 0;
    while (n) {
        n &= (n - 1);
        count++;
    }
    return count;
}
  
// function to count set bits in the given range
unsigned int countSetBitsInGivenRange(unsigned int n,
                       unsigned int l, unsigned int r)
{
    // calculating a number 'num' having 'r' number
    // of bits and bits in the range l to r are the 
    // only set bits
    int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
  
    // returns number of set bits in the range
    // 'l' to 'r' in 'n'
    return countSetBits(n & num);
}
  
// Driver program to test above
int main()
{
    unsigned int n = 42;
    unsigned int l = 2, r = 5;
    cout << countSetBitsInGivenRange(n, l, r);
    return 0;
}


Java




// Java implementation to count set bits in the
// given range
class GFG {
      
    // Function to get no of set bits in the
    // binary representation of 'n'
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0) {
            n &= (n - 1);
            count++;
        }
          
        return count;
    }
  
    // function to count set bits in the given range
    static int countSetBitsInGivenRange(int n, int l, int r)
    {
          
        // calculating a number 'num' having 'r' number
        // of bits and bits in the range l to r are the
        // only set bits
        int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
  
        // returns number of set bits in the range
        // 'l' to 'r' in 'n'
        return countSetBits(n & num);
    }
      
    // Driver code
    public static void main(String[] args)
    {
        int n = 42;
        int l = 2, r = 5;
          
        System.out.print(countSetBitsInGivenRange(n, l, r));
    }
}
  
// This code is contributed by Anant Agarwal.


Python3




# Python3 implementation to count
# set bits in the given range
  
# Function to get no of set bits in the
# binary representation of 'n'
def countSetBits(n):
    count = 0
    while (n):
        n &= (n - 1)
        count = count + 1
      
    return count
   
# function to count set bits in
# the given range
def countSetBitsInGivenRange(n, l,  r):
  
    # calculating a number 'num' having
    # 'r' number of bits and bits in the
    # range l to r are the  only set bits
    num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1)
   
    # returns number of set bits in the range
    # 'l' to 'r' in 'n'
    return countSetBits(n & num)
  
# Driver program to test above
n = 42
l = 2
r = 5
ans = countSetBitsInGivenRange(n, l, r)
print (ans)
  
# This code is contributed by Saloni Gupta.


C#




// C# implementation to count set bits in the
// given range
using System;
  
class GFG {
      
    // Function to get no of set bits in the
    // binary representation of 'n'
    static int countSetBits(int n)
    {
        int count = 0;
          
        while (n>0) {
            n &= (n - 1);
            count++;
        }
          
        return count;
    }
       
    // function to count set bits in the given range
    static int countSetBitsInGivenRange(int n,
                                       int l, int r)
    {
          
        // calculating a number 'num' having 'r' number
        // of bits and bits in the range l to r are the 
        // only set bits
        int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
       
        // returns number of set bits in the range
        // 'l' to 'r' in 'n'
        return countSetBits(n & num);
    }
      
    //Driver code
    public static void Main()
    {
        int n = 42;
        int l = 2, r = 5;
          
        Console.WriteLine(countSetBitsInGivenRange(n, l, r));
    }
}
  
// This code is contributed by Anant Agarwal.


PHP




<?php
// PHP implementation to count
// set bits in the given range
  
// Function to get no of set bits in 
// the binary representation of 'n'
function countSetBits($n)
{
    $count = 0;
    while ($n)
    {
        $n &= ($n - 1);
        $count++;
    }
    return $count;
}
  
// function to count set 
// bits in the given range
function countSetBitsInGivenRange($n, $l, $r)
{
      
    // calculating a number 'num'
    // having 'r' number of bits
    // and bits in the range l to
    // r are the only set bits
    $num = ((1 << $r) - 1) ^ 
           ((1 << ($l - 1)) - 1);
  
    // returns number of 
    // set bits in the range
    // 'l' to 'r' in 'n'
    return countSetBits($n & $num);
}
  
    // Driver Code
    $n = 42;
    $l = 2;
    $r = 5;
    echo countSetBitsInGivenRange($n, $l, $r);
  
// This code is contributed by Ajit.
?>


Javascript




<script>
  
// Javascript implementation to 
// count set bits in the
// given range
  
 // Function to get no of set bits in the
    // binary representation of 'n'
    function countSetBits(n)
    {
        let count = 0;
        while (n > 0) {
            n &= (n - 1);
            count++;
        }
            
        return count;
    }
    
    // function to count set 
    // bits in the given range
    function countSetBitsInGivenRange(n, l, r)
    {
            
        // calculating a number 'num' 
        // having 'r' number
        // of bits and bits in the 
        // range l to r are the
        // only set bits
        let num = ((1 << r) - 1) ^ 
                   ((1 << (l - 1)) - 1);
    
        // returns number of set 
        // bits in the range
        // 'l' to 'r' in 'n'
        return countSetBits(n & num);
    }
  
// driver program 
  
        let n = 42;
        let l = 2, r = 5;
            
     document.write(countSetBitsInGivenRange(n, l, r));
    
</script>


Output:  

2

Time Complexity: O(logn)

Auxiliary Space: O(1) 

This article is contributed by Ayush Jauhari. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments