Given a number N, the task is to count all ‘a’ and ‘b’ that satisfy the condition a^2 + b^2 = N.
Note:- (a, b) and (b, a) are to be considered as two different pairs and (a, a) is also valid and to be considered only one time.
Examples:
Input: N = 10 Output: 2 1^2 + 3^2 = 10 3^2 + 1^2 = 10 Input: N = 8 Output: 1 2^2 + 2^2 = 8
Approach:
- Traverse numbers from 1 to square root of N.
- Subtract square of the current number from N and check if their difference is a perfect square or not.
- If it is perfect square then increment the count.
- Return count.
Below is the implementation of above approach:
C++
// C++ program to count pairs whose sum // of squares is N #include <bits/stdc++.h> using namespace std; // Function to count the pairs satisfying // a ^ 2 + b ^ 2 = N int countPairs( int N) { int count = 0; // Check for each number 1 to sqrt(N) for ( int i = 1; i <= sqrt (N); i++) { // Store square of a number int sq = i * i; // Subtract the square from given N int diff = N - sq; // Check if the difference is also // a perfect square int sqrtDiff = sqrt (diff); // If yes, then increment count if (sqrtDiff * sqrtDiff == diff) count++; } return count; } // Driver code int main() { // Loop to Count no. of pairs satisfying // a ^ 2 + b ^ 2 = i for N = 1 to 10 for ( int i = 1; i <= 10; i++) cout << "For n = " << i << ", " << countPairs(i) << " pair exists\n" ; return 0; } |
Java
// Java program to count pairs whose sum // of squares is N import java.io.*; class GFG { // Function to count the pairs satisfying // a ^ 2 + b ^ 2 = N static int countPairs( int N) { int count = 0 ; // Check for each number 1 to sqrt(N) for ( int i = 1 ; i <= ( int )Math.sqrt(N); i++) { // Store square of a number int sq = i * i; // Subtract the square from given N int diff = N - sq; // Check if the difference is also // a perfect square int sqrtDiff = ( int )Math.sqrt(diff); // If yes, then increment count if (sqrtDiff * sqrtDiff == diff) count++; } return count; } // Driver code public static void main (String[] args) { // Loop to Count no. of pairs satisfying // a ^ 2 + b ^ 2 = i for N = 1 to 10 for ( int i = 1 ; i <= 10 ; i++) System.out.println( "For n = " + i + ", " + countPairs(i) + " pair exists\n" ); } } // This code is contributed by inder_verma. |
Python 3
# Python 3 program to count pairs whose sum # of squares is N # From math import everything from math import * # Function to count the pairs satisfying # a ^ 2 + b ^ 2 = N def countPairs(N) : count = 0 # Check for each number 1 to sqrt(N) for i in range ( 1 , int (sqrt(N)) + 1 ) : # Store square of a number sq = i * i # Subtract the square from given N diff = N - sq # Check if the difference is also # a perfect square sqrtDiff = int (sqrt(diff)) # If yes, then increment count if sqrtDiff * sqrtDiff = = diff : count + = 1 return count # Driver code if __name__ = = "__main__" : # Loop to Count no. of pairs satisfying # a ^ 2 + b ^ 2 = i for N = 1 to 10 for i in range ( 1 , 11 ) : print ( "For n =" ,i, ", " ,countPairs(i), "pair exists" ) # This code is contributed by ANKITRAI1 |
C#
// C# program to count pairs whose sum // of squares is N using System; class GFG { // Function to count the pairs satisfying // a ^ 2 + b ^ 2 = N static int countPairs( int N) { int count = 0; // Check for each number 1 to Sqrt(N) for ( int i = 1; i <= ( int )Math.Sqrt(N); i++) { // Store square of a number int sq = i * i; // Subtract the square from given N int diff = N - sq; // Check if the difference is also // a perfect square int sqrtDiff = ( int )Math.Sqrt(diff); // If yes, then increment count if (sqrtDiff * sqrtDiff == diff) count++; } return count; } // Driver code public static void Main () { // Loop to Count no. of pairs satisfying // a ^ 2 + b ^ 2 = i for N = 1 to 10 for ( int i = 1; i <= 10; i++) Console.Write( "For n = " + i + ", " + countPairs(i) + " pair exists\n" ); } } |
PHP
<?php // PHP program to count pairs // whose sum of squares is N // Function to count the pairs // satisfying a ^ 2 + b ^ 2 = N function countPairs( $N ) { $count = 0; $i = 0; // Check for each number 1 to sqrt(N) for ( $i = 1; $i <= sqrt( $N ); $i ++) { // Store square of a number $sq = $i * $i ; // Subtract the square // from given N $diff = $N - $sq ; // Check if the difference // is also a perfect square $sqrtDiff = sqrt( $diff ); // If yes, then increment count if ( $sqrtDiff * $sqrtDiff == $diff ) $count ++; } return $count ; } // Driver code // Loop to Count no. of pairs satisfying // a ^ 2 + b ^ 2 = i for N = 1 to 10 for ( $i = 1; $i <= 10; $i ++) echo "For n = " . $i . ", " . countPairs( $i ) . " pair exists\n" ; // This code is contributed by Raj ?> |
Javascript
<script> // Javascript program to count pairs whose sum // of squares is N // Function to count the pairs satisfying // a ^ 2 + b ^ 2 = N function countPairs(N) { let count = 0; // Check for each number 1 to sqrt(N) for (let i = 1; i <= Math.sqrt(N); i++) { // Store square of a number let sq = i * i; // Subtract the square from given N let diff = N - sq; // Check if the difference is also // a perfect square let sqrtDiff = Math.sqrt(diff); // If yes, then increment count if (sqrtDiff * sqrtDiff == diff) count++; } return count; } // Driver code // Loop to Count no. of pairs satisfying // a ^ 2 + b ^ 2 = i for N = 1 to 10 for (let i = 1; i <= 10; i++) document.write( "For n = " + i + ", " + countPairs(i) + " pair exists<br>" ); // This code is contributed by rishavmahato348. </script> |
For n = 1, 1 pair exists For n = 2, 1 pair exists For n = 3, 0 pair exists For n = 4, 1 pair exists For n = 5, 2 pair exists For n = 6, 0 pair exists For n = 7, 0 pair exists For n = 8, 1 pair exists For n = 9, 1 pair exists For n = 10, 2 pair exists
Time Complexity : O(sqrt(N))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!