Given an array A of size N where the array elements contain values from 1 to N with duplicates, the task is to find the total number of subarrays that start and end with the same element.
Examples:
Input: A[] = {1, 2, 1, 5, 2}
Output: 7
Explanation:
Total 7 sub-array of the given array are {1}, {2}, {1}, {5}, {2}, {1, 2, 1} and {2, 1, 5, 2} are start and end with same element.
Input: A[] = {1, 5, 6, 1, 9, 5, 8, 10, 8, 9}
Output: 14
Explanation:
Total 14 sub-array {1}, {5}, {6}, {1}, {9}, {5}, {8}, {10}, {8}, {9}, {1, 5, 6, 1}, {5, 6, 1, 9, 5}, {9, 5, 8, 10, 8, 9} and {8, 10, 8} start and end with same element.
Naive approach: For each element in the array, if it is present at a different index as well, we will increase our result by 1. Also, all 1-size subarray are part of counted in the result. Therefore, add N to the result.
Below is the implementation of the above approach:
C++
// C++ program to Count total sub-array // which start and end with same element #include <bits/stdc++.h> using namespace std; // Function to find total sub-array // which start and end with same element void cntArray( int A[], int N) { // initialize result with 0 int result = 0; for ( int i = 0; i < N; i++) { // all size 1 sub-array // is part of our result result++; // element at current index int current_value = A[i]; for ( int j = i + 1; j < N; j++) { // Check if A[j] = A[i] // increase result by 1 if (A[j] == current_value) { result++; } } } // print the result cout << result << endl; } // Driver code int main() { int A[] = { 1, 5, 6, 1, 9, 5, 8, 10, 8, 9 }; int N = sizeof (A) / sizeof ( int ); cntArray(A, N); return 0; } |
Java
// Java program to Count total sub-array // which start and end with same element public class Main { // function to find total sub-array // which start and end with same element public static void cntArray( int A[], int N) { // initialize result with 0 int result = 0 ; for ( int i = 0 ; i < N; i++) { // all size 1 sub-array // is part of our result result++; // element at current index int current_value = A[i]; for ( int j = i + 1 ; j < N; j++) { // Check if A[j] = A[i] // increase result by 1 if (A[j] == current_value) { result++; } } } // print the result System.out.println(result); } // Driver code public static void main(String[] args) { int [] A = { 1 , 5 , 6 , 1 , 9 , 5 , 8 , 10 , 8 , 9 }; int N = A.length; cntArray(A, N); } } |
Python3
# Python3 program to count total sub-array # which start and end with same element # Function to find total sub-array # which start and end with same element def cntArray(A, N): # Initialize result with 0 result = 0 for i in range ( 0 , N): # All size 1 sub-array # is part of our result result = result + 1 # Element at current index current_value = A[i] for j in range (i + 1 , N): # Check if A[j] = A[i] # increase result by 1 if (A[j] = = current_value): result = result + 1 # Print the result print (result) print ( "\n" ) # Driver code A = [ 1 , 5 , 6 , 1 , 9 , 5 , 8 , 10 , 8 , 9 ] N = len (A) cntArray(A, N) # This code is contributed by PratikBasu |
C#
// C# program to Count total sub-array // which start and end with same element using System; class GFG{ // function to find total sub-array // which start and end with same element public static void cntArray( int []A, int N) { // initialize result with 0 int result = 0; for ( int i = 0; i < N; i++) { // all size 1 sub-array // is part of our result result++; // element at current index int current_value = A[i]; for ( int j = i + 1; j < N; j++) { // Check if A[j] = A[i] // increase result by 1 if (A[j] == current_value) { result++; } } } // print the result Console.Write(result); } // Driver code public static void Main() { int [] A = { 1, 5, 6, 1, 9, 5, 8, 10, 8, 9 }; int N = A.Length; cntArray(A, N); } } // This code is contributed by Code_Mech |
Javascript
<script> // Javascript program to Count total sub-array // which start and end with same element // Function to find total sub-array // which start and end with same element function cntArray(A, N) { // initialize result with 0 var result = 0; for ( var i = 0; i < N; i++) { // all size 1 sub-array // is part of our result result++; // element at current index var current_value = A[i]; for ( var j = i + 1; j < N; j++) { // Check if A[j] = A[i] // increase result by 1 if (A[j] == current_value) { result++; } } } // print the result document.write( result ); } // Driver code var A = [1, 5, 6, 1, 9, 5, 8, 10, 8, 9]; var N = A.length; cntArray(A, N); // This code is contributed by noob2000. </script> |
14
Time Complexity: O(N2), where N is the size of the array
Space complexity: O(1)
Efficient approach: We can optimize the above method by observing that the answer just depends on frequencies of numbers in the original array.
For example in array {1, 5, 6, 1, 9, 5, 8, 10, 8, 9}, frequency of 1 is 2 and sub-array contributing to answer are {1}, {1} and {1, 5, 6, 1} respectively, i.e., a total of 3.
Therefore, calculate the frequency of each element in the array. Then for each element, the increment the count by the result yielded by the following formula:
((frequency of element)*(frequency of element + 1)) / 2
Below is the implementation of the above approach:
C++
// C++ program to Count total sub-array // which start and end with same element #include <bits/stdc++.h> using namespace std; // function to find total sub-array // which start and end with same element void cntArray( int A[], int N) { // initialize result with 0 int result = 0; // array to count frequency of 1 to N int frequency[N + 1] = { 0 }; for ( int i = 0; i < N; i++) { // update frequency of A[i] frequency[A[i]]++; } for ( int i = 1; i <= N; i++) { int frequency_of_i = frequency[i]; // update result with sub-array // contributed by number i result += +((frequency_of_i) * (frequency_of_i + 1)) / 2; } // print the result cout << result << endl; } // Driver code int main() { int A[] = { 1, 5, 6, 1, 9, 5, 8, 10, 8, 9 }; int N = sizeof (A) / sizeof ( int ); cntArray(A, N); return 0; } |
Java
// Java program to Count total sub-array // which start and end with same element public class Main { // function to find total sub-array which // start and end with same element public static void cntArray( int A[], int N) { // initialize result with 0 int result = 0 ; // array to count frequency of 1 to N int [] frequency = new int [N + 1 ]; for ( int i = 0 ; i < N; i++) { // update frequency of A[i] frequency[A[i]]++; } for ( int i = 1 ; i <= N; i++) { int frequency_of_i = frequency[i]; // update result with sub-array // contributed by number i result += ((frequency_of_i) * (frequency_of_i + 1 )) / 2 ; } // print the result System.out.println(result); } // Driver code public static void main(String[] args) { int [] A = { 1 , 5 , 6 , 1 , 9 , 5 , 8 , 10 , 8 , 9 }; int N = A.length; cntArray(A, N); } } |
Python3
# Python3 program to count total sub-array # which start and end with same element # Function to find total sub-array # which start and end with same element def cntArray(A, N): # Initialize result with 0 result = 0 # Array to count frequency of 1 to N frequency = [ 0 ] * (N + 1 ) for i in range ( 0 , N): # Update frequency of A[i] frequency[A[i]] = frequency[A[i]] + 1 for i in range ( 1 , N + 1 ): frequency_of_i = frequency[i] # Update result with sub-array # contributed by number i result = result + ((frequency_of_i) * (frequency_of_i + 1 )) / 2 # Print the result print ( int (result)) print ( "\n" ) # Driver code A = [ 1 , 5 , 6 , 1 , 9 , 5 , 8 , 10 , 8 , 9 ] N = len (A) cntArray(A, N) # This code is contributed by PratikBasu |
C#
// C# program to Count total sub-array // which start and end with same element using System; class GFG{ // function to find total sub-array which // start and end with same element public static void cntArray( int []A, int N) { // initialize result with 0 int result = 0; // array to count frequency of 1 to N int [] frequency = new int [N + 1]; for ( int i = 0; i < N; i++) { // update frequency of A[i] frequency[A[i]]++; } for ( int i = 1; i <= N; i++) { int frequency_of_i = frequency[i]; // update result with sub-array // contributed by number i result += ((frequency_of_i) * (frequency_of_i + 1)) / 2; } // print the result Console.Write(result); } // Driver code public static void Main() { int [] A = { 1, 5, 6, 1, 9, 5, 8, 10, 8, 9 }; int N = A.Length; cntArray(A, N); } } // This code is contributed by Nidhi_Biet |
Javascript
<script> // Javascript program to Count total sub-array // which start and end with same element // function to find total sub-array which // start and end with same element function cntArray(A, N) { // initialize result with 0 let result = 0; // array to count frequency of 1 to N let frequency = Array.from({length: N+1}, (_, i) => 0); for (let i = 0; i < N; i++) { // update frequency of A[i] frequency[A[i]]++; } for (let i = 1; i <= N; i++) { let frequency_of_i = frequency[i]; // update result with sub-array // contributed by number i result += ((frequency_of_i) * (frequency_of_i + 1)) / 2; } // print the result document.write(result); } // Driver Code let A = [ 1, 5, 6, 1, 9, 5, 8, 10, 8, 9 ]; let N = A.length; cntArray(A, N); </script> |
14
Time Complexity: O(N), where N is the size of the array
Space complexity: O(N)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!