Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AICount of Prime Nodes of a Singly Linked List

Count of Prime Nodes of a Singly Linked List

Given a singly linked list containing N nodes, the task is to find the total count of prime numbers.

Examples: 

Input: List = 15 -> 5 -> 6 -> 10 -> 17
Output: 2
5 and 17 are the prime nodes

Input: List = 29 -> 3 -> 4 -> 2 -> 9
Output: 3
2, 3 and 29 are the prime nodes

Approach: The idea is to traverse the linked list to the end and check if the current node is prime or not. If YES, increment the count by 1 and keep doing the same until all the nodes get traversed. 

Below is the implementation of above approach:  

C++




// C++ implementation to find count of prime numbers
// in the singly linked list
#include <bits/stdc++.h>
using namespace std;
 
// Node of the singly linked list
struct Node {
    int data;
    Node* next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
void push(Node** head_ref, int new_data)
{
    Node* new_node = new Node;
    new_node->data = new_data;
    new_node->next = (*head_ref);
    (*head_ref) = new_node;
}
 
// Function to check if a number is prime
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find count of prime
// nodes in a linked list
int countPrime(Node** head_ref)
{
    int count = 0;
    Node* ptr = *head_ref;
 
    while (ptr != NULL) {
        // If current node is prime
        if (isPrime(ptr->data)) {
            // Update count
            count++;
        }
        ptr = ptr->next;
    }
 
    return count;
}
 
// Driver program
int main()
{
    // start with the empty list
    Node* head = NULL;
 
    // create the linked list
    // 15 -> 5 -> 6 -> 10 -> 17
    push(&head, 17);
    push(&head, 10);
    push(&head, 6);
    push(&head, 5);
    push(&head, 15);
 
    // Function call to print require answer
    cout << "Count of prime nodes = "
         << countPrime(&head);
 
    return 0;
}


Java




// Java implementation to find count of prime numbers
// in the singly linked list
class solution
{
 
// Node of the singly linked list
static class Node {
    int data;
    Node  next;
}
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node   head_ref, int new_data)
{
    Node  new_node = new Node();
    new_node.data = new_data;
    new_node.next = ( head_ref);
    ( head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static boolean isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find count of prime
// nodes in a linked list
static int countPrime(Node   head_ref)
{
    int count = 0;
    Node  ptr =  head_ref;
 
    while (ptr != null) {
        // If current node is prime
        if (isPrime(ptr.data)) {
            // Update count
            count++;
        }
        ptr = ptr.next;
    }
 
    return count;
}
 
// Driver program
public static void main(String args[])
{
    // start with the empty list
    Node  head = null;
 
    // create the linked list
    // 15 . 5 . 6 . 10 . 17
    head=push(head, 17);
    head=push(head, 10);
    head=push(head, 6);
    head=push(head, 5);
    head=push(head, 15);
 
    // Function call to print require answer
    System.out.print( "Count of prime nodes = "+ countPrime(head));
 
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation to find count of
# prime numbers in the singly linked list
 
# Function to check if a number is prime
def isPrime(n):
 
    # Corner cases
    if n <= 1:
        return False
    if n <= 3:
        return True
 
    # This is checked so that we can skip
    # middle five numbers in below loop
    if n % 2 == 0 or n % 3 == 0:
        return False
     
    i = 5
    while i * i <= n:
        if n % i == 0 or n % (i + 2) == 0:
            return False
        i += 6
 
    return True
 
# Link list node
class Node:
     
    def __init__(self, data, next):
        self.data = data
        self.next = next
         
class LinkedList:
     
    def __init__(self):
        self.head = None
     
    # Push a new node on the front of the list.    
    def push(self, new_data):
        new_node = Node(new_data, self.head)
        self.head = new_node
 
    # Function to find count of prime
    # nodes in a linked list
    def countPrime(self):
     
        count = 0
        ptr = self.head
     
        while ptr != None:
             
            # If current node is prime
            if isPrime(ptr.data):
                 
                # Update count
                count += 1
             
            ptr = ptr.next
     
        return count
 
# Driver Code
if __name__ == "__main__":
 
    # Start with the empty list
    linkedlist = LinkedList()
 
    # create the linked list
    # 15 -> 5 -> 6 -> 10 -> 17
    linkedlist.push(17)
    linkedlist.push(10)
    linkedlist.push(6)
    linkedlist.push(5)
    linkedlist.push(15)
 
    # Function call to print require answer
    print("Count of prime nodes =",
           linkedlist.countPrime())
 
# This code is contributed by Rituraj Jain


C#




// C# implementation to find count of prime numbers
// in the singly linked list
using System;
 
class GFG
{
 
// Node of the singly linked list
public class Node
{
    public int data;
    public Node next;
}
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
    Node new_node = new Node();
    new_node.data = new_data;
    new_node.next = ( head_ref);
    ( head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find count of prime
// nodes in a linked list
static int countPrime(Node head_ref)
{
    int count = 0;
    Node ptr = head_ref;
 
    while (ptr != null)
    {
        // If current node is prime
        if (isPrime(ptr.data))
        {
            // Update count
            count++;
        }
        ptr = ptr.next;
    }
 
    return count;
}
 
// Driver code
public static void Main(String []args)
{
    // start with the empty list
    Node head = null;
 
    // create the linked list
    // 15 . 5 . 6 . 10 . 17
    head=push(head, 17);
    head=push(head, 10);
    head=push(head, 6);
    head=push(head, 5);
    head=push(head, 15);
 
    // Function call to print require answer
    Console.Write( "Count of prime nodes = "+ countPrime(head));
}
}
 
// This code has been contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation to find count
// of prime numbers in the singly linked list    
 
// Node of the singly linked list
class Node
{
    constructor(val)
    {
        this.data = val;
        this.next = null;
    }
}
 
// Function to insert a node at the beginning
// of the singly Linked List
function push(head_ref, new_data)
{
    var new_node = new Node();
    new_node.data = new_data;
    new_node.next = (head_ref);
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
function isPrime(n)
{
     
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for(i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find count of prime
// nodes in a linked list
function countPrime(head_ref)
{
     
    var count = 0;
    var ptr = head_ref;
 
    while (ptr != null)
    {
         
        // If current node is prime
        if (isPrime(ptr.data))
        {
             
            // Update count
            count++;
        }
        ptr = ptr.next;
    }
    return count;
}
 
// Driver code
 
// Start with the empty list
var head = null;
 
// Create the linked list
// 15 . 5 . 6 . 10 . 17
head = push(head, 17);
head = push(head, 10);
head = push(head, 6);
head = push(head, 5);
head = push(head, 15);
 
// Function call to print require answer
document.write("Count of prime nodes = " +
               countPrime(head));
 
// This code is contributed by gauravrajput1
 
</script>


Output

Count of prime nodes = 2

Complexity Analysis:

  • Time Complexity: O(N*sqrt(P)), where N is length of the LinkedList and P is the maximum element in the List
  • Auxiliary Space: O(1)

Recursive Approach:

The base case of the recursion is when the head node is NULL, in which case the function returns 0. Otherwise, the function first calls itself recursively for the next node in the linked list, and obtains the count of prime nodes in the remaining linked list. If the data of the current node is prime, it adds 1 to the count and returns it, otherwise it simply returns the count obtained from the recursive call. The final result returned by the function is the count of prime nodes in the entire linked list.

  • If the head node is NULL, return 0.
  • Recursively call the function for the rest of the linked list by passing the next node.
  • If the data of the current node is prime, add 1 to the count and return it.
  • Otherwise, return the count obtained from the recursive call.

Below is the implementation of the above approach:

C++




#include <iostream>
using namespace std;
 
// Node of the singly linked list
struct Node {
    int data;
    Node* next;
};
 
// Function to insert a node at the beginning
// of the singly linked list
void push(Node** head_ref, int new_data) {
    Node* new_node = new Node;
    new_node->data = new_data;
    new_node->next = (*head_ref);
    (*head_ref) = new_node;
}
 
// Function to check if a number is prime
bool isPrime(int n) {
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to count prime nodes in a linked list
int countPrimeRecursive(Node* head) {
    if (head == NULL)
        return 0;
 
    int count = countPrimeRecursive(head->next);
 
    if (isPrime(head->data))
        count++;
 
    return count;
}
 
// Driver program
int main() {
    // start with the empty list
    Node* head = NULL;
 
    // create the linked list
    // 15 -> 5 -> 6 -> 10 -> 17
    push(&head, 17);
    push(&head, 10);
    push(&head, 6);
    push(&head, 5);
    push(&head, 15);
 
    // Function call to print required answer
    cout << "Count of prime nodes = " << countPrimeRecursive(head);
 
    return 0;
}


Output

Count of prime nodes = 2

Time Complexity: O(N), where N is the number of nodes in the linked list.
Space Complexity: O(N), where N is the number of nodes in the linked list. This is because we create a recursive call stack for each node.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments