Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICount elements in the given range which have maximum number of divisors

Count elements in the given range which have maximum number of divisors

Given two numbers X and Y. The task is to find the number of elements in the range [X,Y] both inclusive, that have the maximum number of divisors.

Examples

Input: X = 2, Y = 9 
Output: 2 
6, 8 are numbers with the maximum number of divisors.

Input: X = 1, Y = 10 
Output: 3 
6, 8, 10 are numbers with the maximum number of divisors. 

Method 1:  

  • Traverse all the elements from X to Y one by one.
  • Find the number of divisors of each element.
  • Store the number of divisors in an array and update the maximum number of Divisors(maxDivisors).
  • Traverse the array that contains divisors and counts the number of elements equal to maxDivisors.
  • Return the count.

Below is the implementation of above method:  

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the divisors
int countDivisors(int n)
{
    int count = 0;
 
    // Note that this loop runs till square root
    for (int i = 1; i <= sqrt(n); i++) {
        if (n % i == 0) {
 
            // If divisors are equal, print only one
            if (n / i == i)
                count++;
 
            else // Otherwise print both
                count += 2;
        }
    }
 
    return count;
}
 
// Function to count the number with
// maximum divisors
int MaximumDivisors(int X, int Y)
{
    int maxDivisors = INT_MIN, result = 0;
 
    // to store number of divisors
    int arr[Y - X + 1];
 
    // Traverse from X to Y
    for (int i = X; i <= Y; i++) {
 
            // Count the number of divisors of i
             int Div = countDivisors(i);
 
            // Store the value of div in an array
             arr[i - X] = Div;
 
            // Update the value of maxDivisors
             maxDivisors = max(Div, maxDivisors);
 
    }
 
    // Traverse the array
    for (int i = 0; i < (Y - X + 1); i++)
 
        // Count the value equals to maxDivisors
        if (arr[i] == maxDivisors)
            result++;
 
    return result;
}
 
// Driver Code
int main()
{
    int X = 1, Y = 10;
 
    // function call
    cout << MaximumDivisors(X, Y) << endl;
 
    return 0;
}


C




// C implementation of above approach
#include <stdio.h>
#include <math.h>
#include <limits.h>
 
int max(int a,int b)
{
  int max = a;
  if(max < b)
    max = b;
  return max;
}
 
// Function to count the divisors
int countDivisors(int n)
{
    int count = 0;
 
    // Note that this loop runs till square root
    for (int i = 1; i <= sqrt(n); i++) {
        if (n % i == 0) {
 
            // If divisors are equal, print only one
            if (n / i == i)
                count++;
 
            else // Otherwise print both
                count += 2;
        }
    }
 
    return count;
}
 
// Function to count the number with
// maximum divisors
int MaximumDivisors(int X, int Y)
{
    int maxDivisors = INT_MIN, result = 0;
 
    // to store number of divisors
    int arr[Y - X + 1];
 
    // Traverse from X to Y
    for (int i = X; i <= Y; i++) {
 
            // Count the number of divisors of i
             int Div = countDivisors(i);
 
            // Store the value of div in an array
             arr[i - X] = Div;
 
            // Update the value of maxDivisors
             maxDivisors = max(Div, maxDivisors);
 
    }
 
    // Traverse the array
    for (int i = 0; i < (Y - X + 1); i++)
 
        // Count the value equals to maxDivisors
        if (arr[i] == maxDivisors)
            result++;
 
    return result;
}
 
// Driver Code
int main()
{
    int X = 1, Y = 10;
 
    // function call
    printf("%d\n",MaximumDivisors(X, Y));
 
    return 0;
}
 
// This code is contributed by kothavvsaakash.


Java




// Java implementation of above approach
class GFG
{
 
// Function to count the divisors
static int countDivisors(int n)
{
int count = 0;
 
// Note that this loop
// runs till square root
for (int i = 1; i <= Math.sqrt(n); i++)
{
    if (n % i == 0)
    {
 
        // If divisors are equal,
        // print only one
        if (n / i == i)
            count++;
 
        else // Otherwise print both
            count += 2;
    }
}
 
return count;
}
 
// Function to count the number
// with maximum divisors
static int MaximumDivisors(int X, int Y)
{
int maxDivisors = 0, result = 0;
 
// to store number of divisors
int[] arr = new int[Y - X + 1];
 
// Traverse from X to Y
for (int i = X; i <= Y; i++)
{
 
    // Count the number of divisors of i
    int Div = countDivisors(i);
 
    // Store the value of div in an array
    arr[i - X] = Div;
 
    // Update the value of maxDivisors
    maxDivisors = Math.max(Div, maxDivisors);
 
}
 
// Traverse the array
for (int i = 0; i < (Y - X + 1); i++)
 
    // Count the value equals
    // to maxDivisors
    if (arr[i] == maxDivisors)
        result++;
 
return result;
}
 
// Driver Code
public static void main(String[] args)
{
    int X = 1, Y = 10;
 
    // function call
    System.out.println(MaximumDivisors(X, Y));
}
}
 
// This code is contributed
// by ChitraNayal


Python3




# from math module import everything
from math import *
 
# Python 3 implementation of above approach
 
# Function to count the divisors
def countDivisors(n) :
    count = 0
     
    # Note that this loop runs till square root
    for i in range(1,int(sqrt(n)+1)) :
        if n % i == 0 :
 
            # If divisors are equal, print only one
            if n / i == i :
                count += 1
                 
            # Otherwise print both
            else :
                count += 2
 
    return count
 
# Function to count the number with
# maximum divisors
def MaximumDivisors(X,Y) :
    result = 0
    maxDivisors = 0
 
    # create list to store number of divisors
    arr = []
     
    # initialize with 0 upto length Y-X+1
    for i in range(Y - X + 1) :
        arr.append(0)
 
    # Traverse from X to Y  
    for i in range(X,Y+1) :
 
        # Count the number of divisors of i
        Div = countDivisors(i)
 
        # Store the value of div in an array
        arr[i - X] = Div
         
        # Update the value of maxDivisors
        maxDivisors = max(Div,maxDivisors)
         
    # Traverse the array 
    for i in range (Y - X + 1) :
 
        # Count the value equals to maxDivisors
        if arr[i] == maxDivisors :
            result += 1
 
    return result
 
# Driver code
if __name__ == "__main__" :
 
    X, Y = 1, 10
 
    # function call
    print(MaximumDivisors(X,Y))


C#




// C# implementation of above approach
using System;
 
class GFG
{
 
// Function to count the divisors
static int countDivisors(int n)
{
int count = 0;
 
// Note that this loop
// runs till square root
for (int i = 1; i <= Math.Sqrt(n); i++)
{
    if (n % i == 0)
    {
 
        // If divisors are equal,
        // print only one
        if (n / i == i)
            count++;
 
        else // Otherwise print both
            count += 2;
    }
}
 
return count;
}
 
// Function to count the number
// with maximum divisors
static int MaximumDivisors(int X, int Y)
{
int maxDivisors = 0, result = 0;
 
// to store number of divisors
int[] arr = new int[Y - X + 1];
 
// Traverse from X to Y
for (int i = X; i <= Y; i++)
{
 
    // Count the number of divisors of i
    int Div = countDivisors(i);
 
    // Store the value of div in an array
    arr[i - X] = Div;
 
    // Update the value of maxDivisors
    maxDivisors = Math.Max(Div, maxDivisors);
 
}
 
// Traverse the array
for (int i = 0; i < (Y - X + 1); i++)
 
    // Count the value equals
    // to maxDivisors
    if (arr[i] == maxDivisors)
        result++;
 
return result;
}
 
// Driver Code
public static void Main()
{
    int X = 1, Y = 10;
 
    // function call
    Console.Write(MaximumDivisors(X, Y));
}
}
 
// This code is contributed
// by ChitraNayal


PHP




<?php
// PHP implementation of above approach
 
// Function to count the divisors
function countDivisors($n)
{
    $count = 0;
 
    // Note that this loop
    // runs till square root
    for ($i = 1; $i <= sqrt($n); $i++)
    {
        if ($n % $i == 0)
        {
 
            // If divisors are equal,
            // print only one
            if ($n / $i == $i)
                $count++;
 
            else // Otherwise print both
                $count += 2;
        }
    }
 
    return $count;
}
 
// Function to count the number
// with maximum divisors
function MaximumDivisors($X, $Y)
{
    $maxDivisors = PHP_INT_MIN;
    $result = 0;
 
    // to store number of divisors
    $arr = array_fill(0, ($Y - $X + 1), NULL);
 
    // Traverse from X to Y
    for ($i = $X; $i <= $Y; $i++)
    {
 
        // Count the number of divisors of i
        $Div = countDivisors($i);
 
        // Store the value of div in an array
        $arr[$i - $X] = $Div;
 
        // Update the value of maxDivisors
        $maxDivisors = max($Div, $maxDivisors);
    }
 
    // Traverse the array
    for ($i = 0; $i < ($Y - $X + 1); $i++)
 
        // Count the value equals to maxDivisors
        if ($arr[$i] == $maxDivisors)
            $result++;
 
    return $result;
}
 
// Driver Code
$X = 1;
$Y = 10;
 
// function call
echo MaximumDivisors($X, $Y)." ";
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
// Javascript implementation of above approach
 
// Function to count the divisors
function countDivisors(n)
{
    let count = 0;
     
    // Note that this loop
    // runs till square root
    for(let i = 1; i <= Math.sqrt(n); i++)
    {
        if (n % i == 0)
        {
             
            // If divisors are equal,
            // print only one
            if (Math.floor(n / i) == i)
                count++;
       
            else
             
                // Otherwise print both
                count += 2;
        }
    }
    return count;
}
 
// Function to count the number
// with maximum divisors
function MaximumDivisors(X, Y)
{
    let maxDivisors = 0, result = 0;
   
    // To store number of divisors
    let arr = new Array(Y - X + 1);
       
    // Traverse from X to Y
    for(let i = X; i <= Y; i++)
    {
         
        // Count the number of divisors of i
        let Div = countDivisors(i);
       
        // Store the value of div in an array
        arr[i - X] = Div;
       
        // Update the value of maxDivisors
        maxDivisors = Math.max(Div, maxDivisors);
    }
       
    // Traverse the array
    for(let i = 0; i < (Y - X + 1); i++)
     
        // Count the value equals
        // to maxDivisors
        if (arr[i] == maxDivisors)
            result++;
       
    return result;
}
 
// Driver Code
let X = 1, Y = 10;
 
// Function call
document.write(MaximumDivisors(X, Y));
 
// This code is contributed by rag2127
 
</script>


Output: 

3

 

Time Complexity: O(sqrt(n))
Auxiliary Space: O(n)

Method 2: 

  • Create an array of size Y-X+1 to store number of divisors of X in arr[0], X+1 in arr[1]… up to Y.
  • To get the number of divisors of all numbers from X to Y run two loops(nested).
  • Run an outer loop from 1 to sqrt(Y).
  • Run an inner loop from first_divisible to Y.
  • First_divisible is the number which is the first number to be divisible by I(outer loop) and greater than or equals to X.

Here, first_divisible is calculated by using Find the number closest to n and divisible by m method. Then find divisors of the number.

Below is the implementation of above approach:  

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the elements
// with maximum number of divisors
int MaximumDivisors(int X, int Y)
{
    // to store number of divisors
    int arr[Y - X + 1];
 
    // initialise with zero
    memset(arr, 0, sizeof(arr));
 
    // to store the maximum number of divisors
    int mx = INT_MIN;
 
    // to store required answer
    int cnt = 0;
 
    for (int i = 1; i * i <= Y; i++) {
        int sq = i * i;
        int first_divisible;
 
        // Find the first divisible number
        if ((X / i) * i >= X)
            first_divisible = (X / i) * i;
        else
            first_divisible = (X / i + 1) * i;
 
        // Count number of divisors
        for (int j = first_divisible; j <= Y; j += i) {
            if (j < sq)
                continue;
            else if (j == sq)
                arr[j - X]++;
            else
                arr[j - X] += 2;
        }
    }
 
    // Find number of elements with
    // maximum number of divisors
    for (int i = X; i <= Y; i++) {
        if (arr[i - X] > mx) {
            cnt = 1;
            mx = arr[i - X];
        }
        else if (arr[i - X] == mx)
            cnt++;
    }
 
    return cnt;
}
 
// Driver code
int main()
{
    int X = 1, Y = 10;
    cout << MaximumDivisors(X, Y) << endl;
 
    return 0;
}


C




// C implementation of above approach
#include <stdio.h>
#include <limits.h>
#include <string.h>
 
// Function to count the elements
// with maximum number of divisors
int MaximumDivisors(int X, int Y)
{
    // to store number of divisors
    int arr[Y - X + 1];
 
    // initialise with zero
    memset(arr, 0, sizeof(arr));
 
    // to store the maximum number of divisors
    int mx = INT_MIN;
 
    // to store required answer
    int cnt = 0;
 
    for (int i = 1; i * i <= Y; i++) {
        int sq = i * i;
        int first_divisible;
 
        // Find the first divisible number
        if ((X / i) * i >= X)
            first_divisible = (X / i) * i;
        else
            first_divisible = (X / i + 1) * i;
 
        // Count number of divisors
        for (int j = first_divisible; j <= Y; j += i) {
            if (j < sq)
                continue;
            else if (j == sq)
                arr[j - X]++;
            else
                arr[j - X] += 2;
        }
    }
 
    // Find number of elements with
    // maximum number of divisors
    for (int i = X; i <= Y; i++) {
        if (arr[i - X] > mx) {
            cnt = 1;
            mx = arr[i - X];
        }
        else if (arr[i - X] == mx)
            cnt++;
    }
 
    return cnt;
}
 
// Driver code
int main()
{
    int X = 1, Y = 10;
    printf("%d\n",MaximumDivisors(X, Y));
 
    return 0;
}
 
// This code is contributed by kothavvsaakash.


Java




// Java implementation of above approach
class GFG
{
 
// Function to count the elements
// with maximum number of divisors
static int MaximumDivisors(int X, int Y)
{
     
// to store number of divisors
int[] arr = new int[Y - X + 1];
 
// initialise with zero
for(int i = 0; i < arr.length; i++)
    arr[i] = 0;
 
// to store the maximum
// number of divisors
int mx = 0;
 
// to store required answer
int cnt = 0;
 
for (int i = 1; i * i <= Y; i++)
{
    int sq = i * i;
    int first_divisible;
 
    // Find the first divisible number
    if ((X / i) * i >= X)
        first_divisible = (X / i) * i;
    else
        first_divisible = (X / i + 1) * i;
 
    // Count number of divisors
    for (int j = first_divisible;
             j <= Y; j += i)
    {
        if (j < sq)
            continue;
        else if (j == sq)
            arr[j - X]++;
        else
            arr[j - X] += 2;
    }
}
 
// Find number of elements with
// maximum number of divisors
for (int i = X; i <= Y; i++)
{
    if (arr[i - X] > mx)
    {
        cnt = 1;
        mx = arr[i - X];
    }
    else if (arr[i - X] == mx)
        cnt++;
}
 
return cnt;
}
 
// Driver code
public static void main(String[] args)
{
    int X = 1, Y = 10;
    System.out.println(MaximumDivisors(X, Y));
}
}
 
// This code is contributed
// by ChitraNayal


Python3




# Python 3 implementation of above approach
 
# Function to count the elements
# with maximum number of divisors
def MaximumDivisors(X, Y):
 
    # to store number of divisors
    # initialise with zero
    arr = [0] * (Y - X + 1)
 
    # to store the maximum
    # number of divisors
    mx = 0
 
    # to store required answer
    cnt = 0
 
    i = 1
    while i * i <= Y :
        sq = i * i
 
        # Find the first divisible number
        if ((X // i) * i >= X) :
            first_divisible = (X // i) * i
        else:
            first_divisible = (X // i + 1) * i
 
        # Count number of divisors
        for j in range(first_divisible, Y + 1, i):
            if j < sq :
                continue
            elif j == sq :
                arr[j - X] += 1
            else:
                arr[j - X] += 2
        i += 1
 
    # Find number of elements with
    # maximum number of divisors
    for i in range(X, Y + 1):
        if arr[i - X] > mx :
            cnt = 1
            mx = arr[i - X]
 
        elif arr[i - X] == mx :
            cnt += 1
 
    return cnt
 
# Driver code
if __name__ == "__main__":
    X = 1
    Y = 10
    print(MaximumDivisors(X, Y))
 
# This code is contributed
# by ChitraNayal


C#




// C# implementation of above approach
using System;
 
class GFG
{
 
// Function to count the elements
// with maximum number of divisors
static int MaximumDivisors(int X, int Y)
{
     
// to store number of divisors
int[] arr = new int[Y - X + 1];
 
// initialise with zero
for(int i = 0; i < arr.Length; i++)
    arr[i] = 0;
 
// to store the maximum
// number of divisors
int mx = 0;
 
// to store required answer
int cnt = 0;
 
for (int i = 1; i * i <= Y; i++)
{
    int sq = i * i;
    int first_divisible;
 
    // Find the first divisible number
    if ((X / i) * i >= X)
        first_divisible = (X / i) * i;
    else
        first_divisible = (X / i + 1) * i;
 
    // Count number of divisors
    for (int j = first_divisible;
             j <= Y; j += i)
    {
        if (j < sq)
            continue;
        else if (j == sq)
            arr[j - X]++;
        else
            arr[j - X] += 2;
    }
}
 
// Find number of elements with
// maximum number of divisors
for (int i = X; i <= Y; i++)
{
    if (arr[i - X] > mx)
    {
        cnt = 1;
        mx = arr[i - X];
    }
    else if (arr[i - X] == mx)
        cnt++;
}
 
return cnt;
}
 
// Driver code
public static void Main()
{
    int X = 1, Y = 10;
    Console.Write(MaximumDivisors(X, Y));
}
}
 
// This code is contributed
// by ChitraNayal


PHP




<?php
// PHP implementation of above approach
 
// Function to count the elements
// with maximum number of divisors
function MaximumDivisors($X, $Y)
{
    // to store number of divisors
    // initialise with zero
    $arr = array_fill(0,($Y - $X + 1), NULL);
  
    // to store the maximum
    // number of divisors
    $mx = PHP_INT_MIN;
 
    // to store required answer
    $cnt = 0;
 
    for ($i = 1; $i * $i <= $Y; $i++)
    {
        $sq = $i * $i;
 
        // Find the first divisible number
        if (($X / $i) * $i >= $X)
            $first_divisible = ($X / $i) * $i;
        else
            $first_divisible = ($X / $i + 1) * $i;
 
        // Count number of divisors
        for ($j = $first_divisible;
             $j < $Y; $j += $i)
        {
            if ($j < $sq)
                continue;
            else if ($j == $sq)
                $arr[$j - $X]++;
            else
                $arr[$j - $X] += 2;
        }
    }
 
    // Find number of elements with
    // maximum number of divisors
    for ($i = $X; $i <= $Y; $i++)
    {
        if ($arr[$i - $X] > $mx
        {
            $cnt = 1;
            $mx = $arr[$i - $X];
        }
        else if ($arr[$i - $X] == $mx)
            $cnt++;
    }
 
    return $cnt;
}
 
// Driver code
$X = 1;
$Y = 10;
echo MaximumDivisors($X, $Y)."\n";
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
// Javascript implementation of above approach
 
// Function to count the elements
// with maximum number of divisors
function MaximumDivisors(X, Y)
{
     
    // To store number of divisors
    let arr = new Array(Y - X + 1);
      
    // Initialise with zero
    for(let i = 0; i < arr.length; i++)
        arr[i] = 0;
      
    // To store the maximum
    // number of divisors
    let mx = 0;
      
    // To store required answer
    let cnt = 0;
      
    for(let i = 1; i * i <= Y; i++)
    {
        let sq = i * i;
        let first_divisible;
      
        // Find the first divisible number
        if (Math.floor(X / i) * i >= X)
            first_divisible = Math.floor(X / i) * i;
        else
            first_divisible = (Math.floor(X / i) +
                                         1) * i;
      
        // Count number of divisors
        for(let j = first_divisible;
                j <= Y; j += i)
        {
            if (j < sq)
                continue;
            else if (j == sq)
                arr[j - X]++;
            else
                arr[j - X] += 2;
        }
    }
      
    // Find number of elements with
    // maximum number of divisors
    for(let i = X; i <= Y; i++)
    {
        if (arr[i - X] > mx)
        {
            cnt = 1;
            mx = arr[i - X];
        }
        else if (arr[i - X] == mx)
            cnt++;
    }
    return cnt;
}
 
// Driver code
let X = 1, Y = 10;
 
document.write(MaximumDivisors(X, Y));
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output: 

3

 

Time Complexity : O((Y – X + 1) * sqrt(Y))
Space Complexity : O(Y – X + 1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments