Given a number n, count all distinct divisors of it.
Examples:
Input : 18 Output : 6 Divisors of 18 are 1, 2, 3, 6, 9 and 18. Input : 100 Output : 9 Divisors of 100 are 1, 2, 4, 5, 10, 20, 25, 50 and 100
Approach 1:
A Naïve Solution would be to iterate all the numbers from 1 to sqrt(n), checking if that number divides n and incrementing number of divisors. This approach takes O(sqrt(n)) time.
C++
// C implementation of Naive method to count all // divisors #include <bits/stdc++.h> using namespace std; // function to count the divisors int countDivisors( int n) { int cnt = 0; for ( int i = 1; i <= sqrt (n); i++) { if (n % i == 0) { // If divisors are equal, // count only one if (n / i == i) cnt++; else // Otherwise count both cnt = cnt + 2; } } return cnt; } /* Driver program to test above function */ int main() { cout << "Total distinct divisors of 100 are " << countDivisors(100)); return 0; } |
Java
// JAVA implementation of Naive method // to count all divisors import java.io.*; import java.math.*; class GFG { // function to count the divisors static int countDivisors( int n) { int cnt = 0 ; for ( int i = 1 ; i <= Math.sqrt(n); i++) { if (n % i == 0 ) { // If divisors are equal, // count only one if (n / i == i) cnt++; else // Otherwise count both cnt = cnt + 2 ; } } return cnt; } /* Driver program to test above function */ public static void main(String args[]) { System.out.println( "Total distinct " + "divisors of 100 are : " + countDivisors( 100 )); } } /*This code is contributed by Nikita Tiwari.*/ |
Python3
# Python3 implementation of Naive method # to count all divisors import math # function to count the divisors def countDivisors(n) : cnt = 0 for i in range ( 1 , ( int )(math.sqrt(n)) + 1 ) : if (n % i = = 0 ) : # If divisors are equal, # count only one if (n / i = = i) : cnt = cnt + 1 else : # Otherwise count both cnt = cnt + 2 return cnt # Driver program to test above function */ print ( "Total distinct divisors of 100 are : " , countDivisors( 100 )) # This code is contributed by Nikita Tiwari. |
C#
// C# implementation of Naive method // to count all divisors using System; class GFG { // function to count the divisors static int countDivisors( int n) { int cnt = 0; for ( int i = 1; i <= Math.Sqrt(n); i++) { if (n % i == 0) { // If divisors are equal, // count only one if (n / i == i) cnt++; // Otherwise count both else cnt = cnt + 2; } } return cnt; } // Driver program public static void Main() { Console.WriteLine( "Total distinct" + " divisors of 100 are : " + countDivisors(100)); } } // This code is contributed by anuj_67. |
PHP
<?php // PHP implementation of Naive // method to count all divisors // function to count the divisors function countDivisors( $n ) { $cnt = 0; for ( $i = 1; $i <= sqrt( $n ); $i ++) { if ( $n % $i == 0) { // If divisors are equal, // count only one if ( $n / $i == $i ) $cnt ++; // Otherwise count both else $cnt = $cnt + 2; } } return $cnt ; } // Driver Code echo "Total distinct divisors of 100 are : " , countDivisors(100); // This code is contributed by Ajit ?> |
Javascript
<script> // JavaScript program for the above approach // function to count the divisors function countDivisors(n) { let cnt = 0; for (let i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { // If divisors are equal, // count only one if (n / i == i) cnt++; else // Otherwise count both cnt = cnt + 2; } } return cnt; } // Driver Code document.write( "Total distinct " + "divisors of 100 are : " + countDivisors(100)); // This code is contributed by susmitakundugoaldanga. </script> |
Output :
Total distinct divisors of 100 are : 9
Time Complexity : (O(n^1/2))
Space Complexity: O(1)
Approach 2:
Optimized Solution (O(n^1/3))
For a number N, we try to find a number X ≤ ∛N i.e. X^3 ≤ N such that it divides the number, and another number Y such that N = X * Y. X consists of all the prime factor of N, which are less than ∛N and Y contains all the prime factors that are greater. Thus, they have no common factor and their HCF is 1.
We iterate through the numbers 1 to ∛N, and for all primes, we check if the number divides N.
If the prime is divisible, we divide it as many times as we can from the number N, so that, specific prime factor no longer remains. We keep doing this for all prime factors less than ∛N. Therefore, the number remaining after the loop won’t have any prime factors less than ∛N.
For N = p1e1 *p2e2*p3e3… where p1, p2, p3.. are the prime factors, the number of divisors is given by (e1+1) * (e2+1) * (e3+1) …
The for loop gives us the product of (e+1) for each prime factor less than ∛N.
The remaining number can only have a maximum of 2 prime factors. We’ll prove this by contradiction.
Assume Y = p1 * p2 * p3 where p1,p2,p3 are prime and p1,p2,p3 > ∛N [Explained above].
Since p1 >∛N and p2 > ∛N and p3 > ∛N
p1*p2*p3 > ∛N*∛N*∛N
=> p1*p2*p3 > N. But Y is a factor of N and cannot be greater than N.
Therefore, there is a contradiction, which implies that one of p1, p2, p3 must be less than ∛N.
But since all primes less than ∛N have been absorbed by X, this is not possible.
So, Y cannot have more than 2 prime factors.
Y can therefore have:
1 prime factors if it is prime (Y) with exponent 1
1 prime factors if it is a square of a prime (sqrt(Y)), with exponent 2
2 prime factors if composite (p1, p2) with exponent 1 and 1
Therefore, we multiply:
If Y is prime => (exponent of y .i.e. 1 +1) = 2
If Y is a square of prime => (exponent of sqrt(y) .i.e. 2+1) = 3
If Y is composite => (exponent of p1 +1)*(exponent of p2+1) = 2 * 2 = 4
C++
// C++ program to count distinct divisors // of a given number n #include <bits/stdc++.h> using namespace std; void SieveOfEratosthenes( int n, bool prime[], bool primesquare[], int a[]) { //For more details check out: https://www.geeksforgeeks.org/sieve-of-eratosthenes/ // Create a boolean array "prime[0..n]" and // initialize all entries it as true. A value // in prime[i] will finally be false if i is // Not a prime, else true. for ( int i = 2; i <= n; i++) prime[i] = true ; // Create a boolean array "primesquare[0..n*n+1]" // and initialize all entries it as false. A value // in squareprime[i] will finally be true if i is // square of prime, else false. for ( int i = 0; i <= (n * n + 1); i++) primesquare[i] = false ; // 1 is not a prime number prime[1] = false ; for ( int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p] == true ) { // Update all multiples of p starting from p * p for ( int i = p * p; i <= n; i += p) prime[i] = false ; } } int j = 0; for ( int p = 2; p <= n; p++) { if (prime[p]) { // Storing primes in an array a[j] = p; // Update value in primesquare[p*p], // if p is prime. primesquare[p * p] = true ; j++; } } } // Function to count divisors int countDivisors( int n) { // If number is 1, then it will have only 1 // as a factor. So, total factors will be 1. if (n == 1) return 1; bool prime[n + 1], primesquare[n * n + 1]; int a[n]; // for storing primes upto n // Calling SieveOfEratosthenes to store prime // factors of n and to store square of prime // factors of n SieveOfEratosthenes(n, prime, primesquare, a); // ans will contain total number of distinct // divisors int ans = 1; // Loop for counting factors of n for ( int i = 0;; i++) { // a[i] is not less than cube root n if (a[i] * a[i] * a[i] > n) break ; // Calculating power of a[i] in n. int cnt = 1; // cnt is power of prime a[i] in n. while (n % a[i] == 0) // if a[i] is a factor of n { n = n / a[i]; cnt = cnt + 1; // incrementing power } // Calculating the number of divisors // If n = a^p * b^q then total divisors of n // are (p+1)*(q+1) ans = ans * cnt; } // if a[i] is greater than cube root of n // First case if (prime[n]) ans = ans * 2; // Second case else if (primesquare[n]) ans = ans * 3; // Third case else if (n != 1) ans = ans * 4; return ans; // Total divisors } // Driver Program int main() { cout << "Total distinct divisors of 100 are : " << countDivisors(100) << endl; return 0; } |
Java
// JAVA program to count distinct // divisors of a given number n import java.io.*; class GFG { static void SieveOfEratosthenes( int n, boolean prime[], boolean primesquare[], int a[]) { // Create a boolean array "prime[0..n]" and // initialize all entries it as true. A value // in prime[i] will finally be false if i is // Not a prime, else true. for ( int i = 2 ; i <= n; i++) prime[i] = true ; /* Create a boolean array "primesquare[0..n*n+1]" and initialize all entries it as false. A value in squareprime[i] will finally be true if i is square of prime, else false.*/ for ( int i = 0 ; i < ((n * n) + 1 ); i++) primesquare[i] = false ; // 1 is not a prime number prime[ 1 ] = false ; for ( int p = 2 ; p * p <= n; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true ) { // Update all multiples of p for ( int i = p * 2 ; i <= n; i += p) prime[i] = false ; } } int j = 0 ; for ( int p = 2 ; p <= n; p++) { if (prime[p]) { // Storing primes in an array a[j] = p; // Update value in // primesquare[p*p], // if p is prime. primesquare[p * p] = true ; j++; } } } // Function to count divisors static int countDivisors( int n) { // If number is 1, then it will // have only 1 as a factor. So, // total factors will be 1. if (n == 1 ) return 1 ; boolean prime[] = new boolean [n + 1 ]; boolean primesquare[] = new boolean [(n * n) + 1 ]; // for storing primes upto n int a[] = new int [n]; // Calling SieveOfEratosthenes to // store prime factors of n and to // store square of prime factors of n SieveOfEratosthenes(n, prime, primesquare, a); // ans will contain total number // of distinct divisors int ans = 1 ; // Loop for counting factors of n for ( int i = 0 ;; i++) { // a[i] is not less than cube root n if (a[i] * a[i] * a[i] > n) break ; // Calculating power of a[i] in n. // cnt is power of prime a[i] in n. int cnt = 1 ; // if a[i] is a factor of n while (n % a[i] == 0 ) { n = n / a[i]; // incrementing power cnt = cnt + 1 ; } // Calculating the number of divisors // If n = a^p * b^q then total // divisors of n are (p+1)*(q+1) ans = ans * cnt; } // if a[i] is greater than cube root // of n // First case if (prime[n]) ans = ans * 2 ; // Second case else if (primesquare[n]) ans = ans * 3 ; // Third case else if (n != 1 ) ans = ans * 4 ; return ans; // Total divisors } // Driver Program public static void main(String args[]) { System.out.println( "Total distinct divisors" + " of 100 are : " + countDivisors( 100 )); } } /*This code is contributed by Nikita Tiwari*/ |
Python3
# Python3 program to count distinct # divisors of a given number n def SieveOfEratosthenes(n, prime,primesquare, a): # Create a boolean array "prime[0..n]" # and initialize all entries it as # true. A value in prime[i] will finally # be false if i is not a prime, else true. for i in range ( 2 ,n + 1 ): prime[i] = True # Create a boolean array "primesquare[0..n*n+1]" # and initialize all entries it as false. # A value in squareprime[i] will finally be # true if i is square of prime, else false. for i in range ((n * n + 1 ) + 1 ): primesquare[i] = False # 1 is not a prime number prime[ 1 ] = False p = 2 while (p * p < = n): # If prime[p] is not changed, # then it is a prime if (prime[p] = = True ): # Update all multiples of p i = p * 2 while (i < = n): prime[i] = False i + = p p + = 1 j = 0 for p in range ( 2 ,n + 1 ): if (prime[p] = = True ): # Storing primes in an array a[j] = p # Update value in primesquare[p*p], # if p is prime. primesquare[p * p] = True j + = 1 # Function to count divisors def countDivisors(n): # If number is 1, then it will # have only 1 as a factor. So, # total factors will be 1. if (n = = 1 ): return 1 prime = [ False ] * (n + 2 ) primesquare = [ False ] * (n * n + 2 ) # for storing primes upto n a = [ 0 ] * n # Calling SieveOfEratosthenes to # store prime factors of n and to # store square of prime factors of n SieveOfEratosthenes(n, prime, primesquare, a) # ans will contain total # number of distinct divisors ans = 1 # Loop for counting factors of n i = 0 while ( 1 ): # a[i] is not less than cube root n if (a[i] * a[i] * a[i] > n): break # Calculating power of a[i] in n. cnt = 1 # cnt is power of # prime a[i] in n. while (n % a[i] = = 0 ): # if a[i] is a factor of n n = n / a[i] cnt = cnt + 1 # incrementing power # Calculating number of divisors # If n = a^p * b^q then total # divisors of n are (p+1)*(q+1) ans = ans * cnt i + = 1 # if a[i] is greater than # cube root of n n = int (n) # First case if (prime[n] = = True ): ans = ans * 2 # Second case else if (primesquare[n] = = True ): ans = ans * 3 # Third case else if (n ! = 1 ): ans = ans * 4 return ans # Total divisors # Driver Code if __name__ = = '__main__' : print ( "Total distinct divisors of 100 are :" ,countDivisors( 100 )) # This code is contributed # by mits |
C#
// C# program to count distinct // divisors of a given number n using System; class GFG { static void SieveOfEratosthenes( int n, bool [] prime, bool [] primesquare, int [] a) { // Create a boolean array "prime[0..n]" and // initialize all entries it as true. A value // in prime[i] will finally be false if i is // Not a prime, else true. for ( int i = 2; i <= n; i++) prime[i] = true ; /* Create a boolean array "primesquare[0..n*n+1]" and initialize all entries it as false. A value in squareprime[i] will finally be true if i is square of prime, else false.*/ for ( int i = 0; i < ((n * n) + 1); i++) primesquare[i] = false ; // 1 is not a prime number prime[1] = false ; for ( int p = 2; p * p <= n; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= n; i += p) prime[i] = false ; } } int j = 0; for ( int p = 2; p <= n; p++) { if (prime[p]) { // Storing primes in an array a[j] = p; // Update value in // primesquare[p*p], // if p is prime. primesquare[p * p] = true ; j++; } } } // Function to count divisors static int countDivisors( int n) { // If number is 1, then it will // have only 1 as a factor. So, // total factors will be 1. if (n == 1) return 1; bool [] prime = new bool [n + 1]; bool [] primesquare = new bool [(n * n) + 1]; // for storing primes upto n int [] a = new int [n]; // Calling SieveOfEratosthenes to // store prime factors of n and to // store square of prime factors of n SieveOfEratosthenes(n, prime, primesquare, a); // ans will contain total number // of distinct divisors int ans = 1; // Loop for counting factors of n for ( int i = 0;; i++) { // a[i] is not less than cube root n if (a[i] * a[i] * a[i] > n) break ; // Calculating power of a[i] in n. // cnt is power of prime a[i] in n. int cnt = 1; // if a[i] is a factor of n while (n % a[i] == 0) { n = n / a[i]; // incrementing power cnt = cnt + 1; } // Calculating the number of divisors // If n = a^p * b^q then total // divisors of n are (p+1)*(q+1) ans = ans * cnt; } // if a[i] is greater than cube root // of n // First case if (prime[n]) ans = ans * 2; // Second case else if (primesquare[n]) ans = ans * 3; // Third case else if (n != 1) ans = ans * 4; return ans; // Total divisors } // Driver Program public static void Main() { Console.Write( "Total distinct divisors" + " of 100 are : " + countDivisors(100)); } } // This code is contributed by parashar. |
PHP
<?php // PHP program to count distinct // divisors of a given number n function SieveOfEratosthenes( $n , & $prime , & $primesquare , & $a ) { // Create a boolean array "prime[0..n]" // and initialize all entries it as // true. A value in prime[i] will finally // be false if i is not a prime, else true. for ( $i = 2; $i <= $n ; $i ++) $prime [ $i ] = true; // Create a boolean array "primesquare[0..n*n+1]" // and initialize all entries it as false. // A value in squareprime[i] will finally be // true if i is square of prime, else false. for ( $i = 0; $i <= ( $n * $n + 1); $i ++) $primesquare [ $i ] = false; // 1 is not a prime number $prime [1] = false; for ( $p = 2; $p * $p <= $n ; $p ++) { // If prime[p] is not changed, // then it is a prime if ( $prime [ $p ] == true) { // Update all multiples of p for ( $i = $p * 2; $i <= $n ; $i += $p ) $prime [ $i ] = false; } } $j = 0; for ( $p = 2; $p <= $n ; $p ++) { if ( $prime [ $p ]) { // Storing primes in an array $a [ $j ] = $p ; // Update value in primesquare[p*p], // if p is prime. $primesquare [ $p * $p ] = true; $j ++; } } } // Function to count divisors function countDivisors( $n ) { // If number is 1, then it will // have only 1 as a factor. So, // total factors will be 1. if ( $n == 1) return 1; $prime = array_fill (false, $n + 1, NULL); $primesquare = array_fill (false, $n * $n + 1, NULL); // for storing primes upto n $a = array_fill (0, $n , NULL); // Calling SieveOfEratosthenes to // store prime factors of n and to // store square of prime factors of n SieveOfEratosthenes( $n , $prime , $primesquare , $a ); // ans will contain total // number of distinct divisors $ans = 1; // Loop for counting factors of n for ( $i = 0;; $i ++) { // a[i] is not less than cube root n if ( $a [ $i ] * $a [ $i ] * $a [ $i ] > $n ) break ; // Calculating power of a[i] in n. $cnt = 1; // cnt is power of // prime a[i] in n. while ( $n % $a [ $i ] == 0) // if a[i] is a // factor of n { $n = $n / $a [ $i ]; $cnt = $cnt + 1; // incrementing power } // Calculating the number of divisors // If n = a^p * b^q then total // divisors of n are (p+1)*(q+1) $ans = $ans * $cnt ; } // if a[i] is greater than // cube root of n // First case if ( $prime [ $n ]) $ans = $ans * 2; // Second case else if ( $primesquare [ $n ]) $ans = $ans * 3; // Third case else if ( $n != 1) $ans = $ans * 4; return $ans ; // Total divisors } // Driver Code echo "Total distinct divisors of 100 are : " . countDivisors(100). "\n" ; // This code is contributed // by ChitraNayal ?> |
Javascript
<script> // Javascript program to count distinct // divisors of a given number n function SieveOfEratosthenes(n, prime, primesquare, a) { // Create a boolean array "prime[0..n]" and // initialize all entries it as true. A value // in prime[i] will finally be false if i is // Not a prime, else true. for (let i = 2; i <= n; i++) prime[i] = true ; // Create a boolean array "primesquare[0..n*n+1]" // and initialize all entries it as false. // A value in squareprime[i] will finally // be true if i is square of prime, // else false. for (let i = 0; i < ((n * n) + 1); i++) primesquare[i] = false ; // 1 is not a prime number prime[1] = false ; for (let p = 2; p * p <= n; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true ) { // Update all multiples of p for (let i = p * 2; i <= n; i += p) prime[i] = false ; } } let j = 0; for (let p = 2; p <= n; p++) { if (prime[p]) { // Storing primes in an array a[j] = p; // Update value in // primesquare[p*p], // if p is prime. primesquare[p * p] = true ; j++; } } } // Function to count divisors function countDivisors(n) { // If number is 1, then it will // have only 1 as a factor. So, // total factors will be 1. if (n == 1) return 1; let prime = new Array(n + 1); let primesquare = new Array((n * n) + 1); // For storing primes upto n let a = new Array(n); for (let i = 0; i < n; i++) { a[i] = 0; } // Calling SieveOfEratosthenes to // store prime factors of n and to // store square of prime factors of n SieveOfEratosthenes(n, prime, primesquare, a); // ans will contain total number // of distinct divisors let ans = 1; // Loop for counting factors of n for (let i = 0;; i++) { // a[i] is not less than cube root n if (a[i] * a[i] * a[i] > n) break ; // Calculating power of a[i] in n. // cnt is power of prime a[i] in n. let cnt = 1; // If a[i] is a factor of n while (n % a[i] == 0) { n = n / a[i]; // Incrementing power cnt = cnt + 1; } // Calculating the number of divisors // If n = a^p * b^q then total // divisors of n are (p+1)*(q+1) ans = ans * cnt; } // If a[i] is greater than cube root // of n // First case if (prime[n]) ans = ans * 2; // Second case else if (primesquare[n]) ans = ans * 3; // Third case else if (n != 1) ans = ans * 4; // Total divisors return ans; } // Driver Code document.write( "Total distinct divisors" + " of 100 are : " + countDivisors(100)); // This code is contributed by avanitrachhadiya2155 </script> |
Output :
Total distinct divisors of 100 are : 9
Time Complexity: O(n1/3)
Space Complexity: O(n)
This article is contributed by Karun Anantharaman. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!