Given an integer ‘n’, generate the first ‘n’ terms of the Connell Sequence.
Connell Sequence is the sequence formed with the first odd number, i.e 1 as its first term. The subsequent terms of the sequence are made up of the first two even numbers, i.e 2 and 4, followed by the next three odd numbers, i.e 5, 7 and 9, followed by the next four even numbers, i.e 10, 12, 14 and 16 and so on …. the sequence continues.
Formula:
a[n] = 2 * n - floor((1 + sqrt(8 * n - 7))/2) ; n > 1
Examples:
Input : 6 Output : 1 2 4 5 7 9 Input : 12 Output : 1 2 4 5 7 9 10 12 14 16 17 19
It may be noted here that writing the terms in new lines as, first term in first line, next two terms in next line, next three terms in next line and so on, gives an interesting pattern as:
Line 1 : 1
Line 2 : 2 4
Line 3 : 5 7 9
Line 4 : 10 12 14 16
Line 5 : 17 19 21 23 25
and so on…
The pattern is every last number of a particular line is equal to that line number squared.
For example
- In line 2 last number is 4 which is equal to its line number squared, i.e 2^2
- In line 5 last number is 25 which is equal to its line number squared, i.e 5^2
Below is a simple implementation where we generate result by alternatively adding odd and even number of elements. We use size of current list to decide next number of elements to push.
C++
// CPP code to generate first 'n' terms // of Connell Sequence #include <bits/stdc++.h> using namespace std; // Function to generate a fixed number // of even or odd terms. The size of r // decides whether numbers to be generated // even or odd. vector< long long int > gen( long long int n, vector< long long int > r) { long long int a = r[r.size() - 1]; a++; for ( int i = 1; i <= n; a += 2, i++) r.push_back(a); return r; } // Generating the first 'n' terms of // Connell Sequence vector< long long int > connell( long long int n) { vector< long long int > res; long long int k = 1; // A dummy 0 is inserted at the // beginning for consistency res.push_back(0); while (1) { // Calling function gen() to generate // 'k' number of terms res = gen(k, res); k++; int j = res.size() - 1; while (j != n && j + k > n) k--; // Checking if 'n' terms are // already generated if (j >= n) break ; } // Removing the previously inserted dummy 0 res.erase(res.begin()); return res; } // Driver Method int main() { long long int n = 10; cout << "The first " << n << " terms are" << endl; vector< long long int > res = conell(n); for ( int i = 0; i < res.size(); i++) cout << res[i] << " " ; cout << endl; return 0; } |
Java
// Java code to generate // first 'n' terms // of Connell Sequence import java.util.*; class GFG { // Function to generate a // fixed number of even or // odd terms. The size of r // decides whether numbers // to be generated even or odd. static Vector<Long> gen( long n, Vector<Long> r) { long a = r.get(r.size() - 1 ); a++; for ( int i = 1 ; i <= n; a += 2 , i++) { r.add(a); } return r; } // Generating the first // 'n' terms of // Connell Sequence static Vector<Long> connell( long n) { Vector<Long> res = new Vector<Long>(); long k = 1 ; // A dummy 0 is inserted // at the beginning for // consistency res.add(0L); while ( true ) { // Calling function // gen() to generate // 'k' number of terms res = gen(k, res); k++; int j = res.size() - 1 ; while (j != n && j + k > n) { k--; } // Checking if 'n' // terms are already // generated if (j >= n) { break ; } } // Removing the previously // inserted dummy 0 res.remove( 0 ); return res; } // Driver Code public static void main(String[] args) { long n = 10 ; System.out.println( "The first " + n + " terms are" ); Vector<Long> res = conell(n); for ( int i = 0 ; i < res.size(); i++) { System.out.print(res.get(i) + " " ); } System.out.println(); } } // This code has been contributed // by Rajput-Ji |
Python3
# Python3 code to generate first 'n' terms # of Connell Sequence # Function to generate a fixed number # of even or odd terms. The size of r # decides whether numbers to be generated # even or odd. def gen(n, r): a = r[ - 1 ] a + = 1 for i in range ( 1 , n + 1 ): r.append(a) a + = 2 return r # Generating the first 'n' terms of # Connell Sequence def connell(n): res = [] k = 1 # A dummy 0 is inserted at the # beginning for consistency res.append( 0 ) while 1 : # Calling function gen() to generate # 'k' number of terms res = gen(k, res) k + = 1 j = len (res) - 1 while j ! = n and j + k > n: k - = 1 # Checking if 'n' terms are # already generated if j > = n: break # Removing the previously inserted dummy 0 res.remove(res[ 0 ]) return res # Driver Code if __name__ = = "__main__" : n = 10 print ( "The first %d terms are" % n) res = conell(n) for i in range ( len (res)): print (res[i], end = " " ) print () # This code is contributed by # sanjeev2552 |
C#
// C# code to generate // first 'n' terms // of Connell Sequence using System; using System.Collections.Generic; class GFG { // Function to generate a // fixed number of even or // odd terms. The size of r // decides whether numbers // to be generated even or odd. static List< long > gen( long n, List< long > r) { long a = r[r.Count - 1]; a++; for ( int i = 1; i <= n; a += 2, i++) r.Add(a); return r; } // Generating the first // 'n' terms of // Connell Sequence static List< long > connell( long n) { List< long > res = new List< long >(); long k = 1; // A dummy 0 is inserted // at the beginning for // consistency res.Add(0); while ( true ) { // Calling function // gen() to generate // 'k' number of terms res = gen(k, res); k++; int j = res.Count - 1; while (j != n && j + k > n) k--; // Checking if 'n' // terms are already // generated if (j >= n) break ; } // Removing the previously // inserted dummy 0 res.RemoveAt(0); return res; } // Driver Code static void Main() { long n = 10; Console.WriteLine( "The first " + n + " terms are" ); List< long > res = conell(n); for ( int i = 0; i < res.Count; i++) Console.Write(res[i] + " " ); Console.WriteLine(); } } // This code is contributed by // Manish Shaw(manishshaw1) |
Javascript
<script> // Javascript code to generate first 'n' terms // of Connell Sequence // Function to generate a fixed number // of even or odd terms. The size of r // decides whether numbers to be generated // even or odd. function gen(n, r) { var a = r[r.length - 1]; a++; for ( var i = 1; i <= n; a += 2, i++) r.push(a); return r; } // Generating the first 'n' terms of // Connell Sequence function connell(n) { var res = []; var k = 1; // A dummy 0 is inserted at the // beginning for consistency res.push(0); while (1) { // Calling function gen() to generate // 'k' number of terms res = gen(k, res); k++; var j = res.length - 1; while (j != n && j + k > n) k--; // Checking if 'n' terms are // already generated if (j >= n) break ; } // Removing the previously inserted dummy 0 res.shift(); return res; } // Driver Method var n = 10; document.write( "The first " + n + " terms are" + "<br>" ); var res = conell(n); for ( var i = 0; i < res.length; i++) document.write( res[i] + " " ); // This code is contributed by rrrtnx. </script> |
Output:
The first 10 terms are 1 2 4 5 7 9 10 12 14 16
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!