Monday, October 7, 2024
Google search engine
HomeData Modelling & AICompute (a*b)%c such that (a%c) * (b%c) can be beyond range

Compute (a*b)%c such that (a%c) * (b%c) can be beyond range

Given three numbers a, b and c such that a, b and c can be at most 1016. The task is to compute (a*b)%c 
A simple solution of doing ( (a % c) * (b % c) ) % c would not work here. The problem here is that a and b can be large so when we calculate (a % c) * (b % c), it goes beyond the range that long long int can hold, hence overflow occurs. For example, If a = (1012+7), b = (1013+5), c = (1015+3).
Now long long int can hold upto 4 x 1018(approximately) and a*b is much larger than that.
 

Instead of doing direct multiplication we can add find a + a + ……….(b times) and take modulus with c each time we add a so that overflow don’t take place. But this would be inefficient looking at constraint on a, b and c. We have to somehow calculate (? a) % c in optimized manner. 
We can use divide and conquer to calculate it. The main idea is: 
 

  1. If b is even then a*b = (2*a) * (b/2)
  2. If b is odd then a*b = a + (2*a)*((b-1)/2)

Below is the implementation of the algorithm: 
 

C++




// C++ program to Compute (a*b)%c
// such that (a%c) * (b%c) can be
// beyond range
#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
 
// returns (a*b)%c
ll mulmod(ll a,ll b,ll c)
{
    // base case if b==0, return 0
    if (b==0)
        return 0;
 
    // Divide the problem into 2 parts
    ll s = mulmod(a, b/2, c);
 
    // If b is odd, return
    // (a+(2*a)*((b-1)/2))%c
    if (b%2==1)
        return (a%c+2*(s%c)) % c;
 
    // If b is odd, return
    // ((2*a)*(b/2))%c
    else
        return (2*(s%c)) % c;
}
 
// Driver code
int main()
{
    ll a = 1000000000007, b = 10000000000005;
    ll c = 1000000000000003;
    printf("%lldn", mulmod(a, b, c));
    return 0;
}


Java




// Java program to Compute (a*b)%c
// such that (a%c) * (b%c) can be
// beyond range
// returns (a*b)%c
class GFG {
 
    static long mulmod(long a, long b, long c) {
        // base case if b==0, return 0
        if (b == 0) {
            return 0;
        }
 
        // Divide the problem into 2 parts
        long s = mulmod(a, b / 2, c);
 
        // If b is odd, return
        // (a+(2*a)*((b-1)/2))%c
        if (b % 2 == 1) {
            return (a % c + 2 * (s % c)) % c;
        } // If b is odd, return
        // ((2*a)*(b/2))%c
        else {
            return (2 * (s % c)) % c;
        }
    }
 
// Driver code
    public static void main(String[] args) {
        long a = 1000000000007L, b = 10000000000005L;
        long c = 1000000000000003L;
        System.out.println((mulmod(a, b, c)));
    }
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 program of above approach
 
# returns (a*b)%c
def mulmod(a, b, c):
 
    # base case if b==0, return 0
    if(b == 0):
        return 0
 
    # Divide the problem into 2 parts
    s = mulmod(a, b // 2, c)
 
    # If b is odd, return
    # (a+(2*a)*((b-1)/2))%c
    if(b % 2 == 1):
        return (a % c + 2 * (s % c)) % c
 
    # If b is odd, return
    # ((2*a)*(b/2))%c
    else:
        return (2 * (s % c)) % c
 
# Driver code
if __name__=='__main__':
    a = 1000000000007
    b = 10000000000005
    c = 1000000000000003
    print(mulmod(a, b, c))
 
# This code is contributed by
# Sanjit_Prasad


C#




// C# program to Compute (a*b)%c
// such that (a%c) * (b%c) can be
// beyond range
using System;
 
// returns (a*b)%c
class GFG
{
static long mulmod(long a, long b, long c)
{
    // base case if b==0, return 0
    if (b == 0)
        return 0;
 
    // Divide the problem into 2 parts
    long s = mulmod(a, b / 2, c);
 
    // If b is odd, return
    // (a+(2*a)*((b-1)/2))%c
    if (b % 2 == 1)
        return (a % c + 2 * (s % c)) % c;
 
    // If b is odd, return
    // ((2*a)*(b/2))%c
    else
        return (2 * (s % c)) % c;
}
 
// Driver code
public static void Main()
{
    long a = 1000000000007, b = 10000000000005;
    long c = 1000000000000003;
    Console.WriteLine(mulmod(a, b, c));
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP program to Compute (a*b)%c
// such that (a%c) * (b%c) can be
// beyond range
 
// returns (a*b)%c
function mulmod($a, $b, $c)
{
     
    // base case if b==0, return 0
    if ($b==0)
        return 0;
 
    // Divide the problem into 2 parts
    $s = mulmod($a, $b/2, $c);
 
    // If b is odd, return
    // (a+(2*a)*((b-1)/2))%c
    if ($b % 2 == 1)
        return ($a % $c + 2 *
           ($s % $c))  %  $c;
 
    // If b is odd, return
    // ((2*a)*(b/2))%c
    else
        return (2 * ($s % $c)) % $c;
}
 
    // Driver Code
    $a = 1000000000007;
    $b = 10000000000005;
    $c = 1000000000000003;
    echo mulmod($a, $b, $c);
     
// This code is contributed by anuj_67.
?>


Javascript




<script>
 
// javascript program to Compute (a*b)%c
// such that (a%c) * (b%c) can be
// beyond range
// returns (a*b)%c  
function mulmod(a , b , c) {
 
        // base case if b==0, return 0
        if (b == 0) {
            return 0;
        }
 
        // Divide the problem into 2 parts
        var s = mulmod(a, parseInt(b / 2), c);
 
        // If b is odd, return
        // (a+(2*a)*((b-1)/2))%c
        if (b % 2 == 1) {
            return (a % c + 2 * (s % c)) % c;
        }
        // If b is odd, return
        // ((2*a)*(b/2))%c
        else {
            return (2 * (s % c)) % c;
        }
    }
 
// Driver code
var a = 1000000000007, b = 10000000000005;
var c = 1000000000000003;
document.write((mulmod(a, b, c)));
 
// This code contributed by Princi Singh
 
</script>


Output : 

74970000000035

See this for sample run.
Time Complexity: O(log b)
This article is contributed by Madhur Modi. If you like neveropen and would like to contribute, you can also write an article and mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Approach#2: Using modulo properties

this  approach is to use the properties of modulo arithmetic. Specifically, we can use the fact that (ab)%c = ((a%c)(b%c))%c. This means that we can first take the modulus of a and b, and then calculate their product.

Algorithm 

Start by defining the function multiply_modulo with three input parameters: a, b, and c.
Calculate the remainder of a when divided by c using the modulo operator and assign it to a.
Calculate the remainder of b when divided by c using the modulo operator and assign it to b.
Multiply a and b.
Calculate the remainder of the product obtained in step 4 when divided by c using the modulo operator and assign it to product.
Return product as the output of the function.

Python3




def multiply_modulo(a, b, c):
  a = a % c
  b = b % c
  product = (a * b) % c
  return product
a = 1000000000007
b = 10000000000005
c = 1000000000000003
print(multiply_modulo(a, b, c))


Javascript




// Javascript code addition
 
function multiply_modulo(a, b, c) {
  a = BigInt(a) % BigInt(c);
  b = BigInt(b) % BigInt(c);
  let product = (a * b) % BigInt(c);
  return product;
}
 
let a = BigInt("1000000000007");
let b = BigInt("10000000000005");
let c = BigInt("1000000000000003");
console.log(multiply_modulo(a, b, c).toString());
 
// The code is contributed by Anjali goel.


Output

74970000000035

Time complexity: O(log(a)+log(b)) 

Auxiliary Space is O(1).

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments