We have discussed Singly and Circular Linked List in the following post:
Singly Linked List
Circular Linked List
Why Circular linked list?
In a singly linked list, for accessing any node of the linked list, we start traversing from the first node. If we are at any node in the middle of the list, then it is not possible to access nodes that precede the given node. This problem can be solved by slightly altering the structure of a singly linked list. In a singly linked list, the next part (pointer to the next node) of the last node is NULL. If we utilize this link to point to the first node, then we can reach the preceding nodes. Refer to this for more advantages of circular linked lists.
In this post, the implementation and insertion of a node in a Circular Linked List using a singly linked list are explained.
Implementation of circular linked list:
To implement a circular singly linked list, we take an external pointer that points to the last node of the list. If we have a pointer last pointing to the last node, then last -> next will point to the first node.
The pointer last points to node Z and last -> next points to node P.
Why have we taken a pointer that points to the last node instead of the first node?
For the insertion of a node at the beginning, we need to traverse the whole list. Also, for insertion at the end, the whole list has to be traversed. If instead of the start pointer, we take a pointer to the last node, then in both cases there won’t be any need to traverse the whole list. So insertion at the beginning or at the end takes constant time, irrespective of the length of the list.
Insertion in a circular linked list:
A node can be added in three ways:
- Insertion in an empty list
- Insertion at the beginning of the list
- Insertion at the end of the list
- Insertion in between the nodes
Insertion in an empty List:
Initially, when the list is empty, the last pointer will be NULL.
After inserting node T,
After insertion, T is the last node, so the pointer last points to node T. And Node T is the first and the last node, so T points to itself.
Below is the implementation of the above operation:
C++
// C++ program for the above operation struct Node* addToEmpty( struct Node* last, int data) { // This function is only for empty list if (last != NULL) return last; // Creating a node dynamically. struct Node* temp = ( struct Node*) malloc ( sizeof ( struct Node)); // Assigning the data. temp->data = data; last = temp; // Note : list was empty. We link single node // to itself. temp->next = last; return last; } |
Java
// Java program for the above operation static Node addToEmpty(Node last, int data) { // This function is only for empty list if (last != null ) return last; // Creating a node dynamically. Node temp = new Node(); // Assigning the data. temp.data = data; last = temp; // Note : list was empty. We link single node // to itself. temp.next = last; return last; } // This code is contributed by gauravrajput1 |
Python3
# Python3 program for the above operation def addToEmpty( self , data): if ( self .last ! = None ): return self .last # Creating the newnode temp temp = Node(data) self .last = temp # Creating the link self .last. next = self .last return self .last # this code is contributed by shivanisinghss2110 |
C#
// C# program for the above operation static Node addToEmpty(Node last, int data) { // This function is only for empty list if (last != null ) return last; // Creating a node dynamically. Node temp = new Node(); // Assigning the data. temp.data = data; last = temp; // Note : list was empty. We link single node // to itself. temp.next = last; return last; } // This code contributed by umadevi9616 |
Javascript
// Javascript program for the above operation function addToEmpty(last , data) { // This function is only for empty list if (last != null ) return last; // Creating a node dynamically. var temp = new Node(); // Assigning the data. temp.data = data; last = temp; // Note : list was empty. We link single node // to itself. temp.next = last; return last; } // This code contributed by umadevi9616 |
Time Complexity: O(1), As we have to perform constant number of operations.
Auxiliary Space: O(1), As constant extra space is used.
Insertion at the beginning of the list
To insert a node at the beginning of the list, follow these steps:
- Create a node, say T
- Make T -> next = last -> next
- last -> next = T
After insertion,
Below is the implementation of the above operation:
C++
// C++ program for the above operation struct Node* addBegin( struct Node* last, int data) { if (last == NULL) return addToEmpty(last, data); // Creating a node dynamically. struct Node* temp = ( struct Node*) malloc ( sizeof ( struct Node)); // Assigning the data. temp->data = data; // Adjusting the links. temp->next = last->next; last->next = temp; return last; } |
Java
// Java program for the above operation static Node addBegin(Node last, int data) { if (last == null ) return addToEmpty(last, data); // Creating a node dynamically Node temp = new Node(); // Assigning the data temp.data = data; // Adjusting the links temp.next = last.next; last.next = temp; return last; } // This code is contributed by rutvik_56 |
Python3
# Python3 program for the above operation def addBegin( self , data): if ( self .last = = None ): return self .addToEmpty(data) temp = Node(data) temp. next = self .last. next self .last. next = temp return self .last # this code is contributed by shivanisinghss2110 |
C#
// C# program for the above operation static Node addBegin(Node last, int data) { if (last == null ) return addToEmpty(last, data); // Creating a node dynamically Node temp = new Node(); // Assigning the data temp.data = data; // Adjusting the links temp.next = last.next; last.next = temp; return last; } // This code is contributed by Pratham76 |
Javascript
// Javascript program for the above operation function addBegin(last , data) { if (last == null ) return addToEmpty(last, data); // Creating a node dynamically. var temp = new Node(); // Assigning the data. temp.data = data; // Adjusting the links. temp.next = last.next; last.next = temp; return last; } // This code contributed by Shivani |
Time complexity: O(1)
Auxiliary Space: O(1)
Insertion at the end of the list
To insert a node at the end of the list, follow these steps:
- Create a node, say T
- Make T -> next = last -> next
- last -> next = T
- last = T
After insertion
Below is the implementation of the above operation:
C++
// C++ program for the above operation struct Node* addEnd( struct Node* last, int data) { if (last == NULL) return addToEmpty(last, data); // Creating a node dynamically. struct Node* temp = ( struct Node*) malloc ( sizeof ( struct Node)); // Assigning the data. temp->data = data; // Adjusting the links. temp->next = last->next; last->next = temp; last = temp; return last; } |
Java
// Java program for the above operation static Node addEnd(Node last, int data) { if (last == null ) return addToEmpty(last, data); // Creating a node dynamically. Node temp = new Node(); // Assigning the data. temp.data = data; // Adjusting the links. temp.next = last.next; last.next = temp; last = temp; return last; } // This code is contributed by shivanisinghss2110 |
Python3
# Python3 program for the above operation def addEnd( self , data): if ( self .last = = None ): return self .addToEmpty(data) # Assigning the data. temp = Node(data) # Adjusting the links. temp. next = self .last. next self .last. next = temp self .last = temp return self .last # This code is contributed by shivanisinghss2110 |
C#
// C# program for the above operation static Node addEnd(Node last, int data) { if (last == null ) return addToEmpty(last, data); // Creating a node dynamically. Node temp = new Node(); // Assigning the data. temp.data = data; // Adjusting the links. temp.next = last.next; last.next = temp; last = temp; return last; } // This code is contributed by shivanisinghss2110 |
Javascript
// Javascript program for the above operation function addEnd(last, data) { if (last == null ) return addToEmpty(last, data); var temp = new Node(); temp.data = data; temp.next = last.next; last.next = temp; last = temp; return last; } // this code is contributed by shivanisinghss2110 |
Time Complexity: O(1)
Auxiliary Space: O(1)
Insertion in between the nodes
To insert a node in between the two nodes, follow these steps:
- Create a node, say T.
- Search for the node after which T needs to be inserted, say that node is P.
- Make T -> next = P -> next;
- P -> next = T.
Suppose 12 needs to be inserted after the node that has the value 8,
After searching and insertion,
Below is the implementation of the above operation:
C++
// C++ program for the above operation struct Node* addAfter( struct Node* last, int data, int item) { if (last == NULL) return NULL; struct Node *temp, *p; p = last->next; // Searching the item. do { if (p->data == item) { // Creating a node dynamically. temp = ( struct Node*) malloc ( sizeof ( struct Node)); // Assigning the data. temp->data = data; // Adjusting the links. temp->next = p->next; // Adding newly allocated node after p. p->next = temp; // Checking for the last node. if (p == last) last = temp; return last; } p = p->next; } while (p != last->next); cout << item << " not present in the list." << endl; return last; } |
Java
// Java program for the above operation static Node addAfter(Node last, int data, int item) { if (last == null ) return null ; Node temp, p; p = last.next; do { if (p.data == item) { temp = new Node(); temp.data = data; temp.next = p.next; p.next = temp; if (p == last) last = temp; return last; } p = p.next; } while (p != last.next); System.out.println(item + " not present in the list." ); return last; } // This code is contributed by shivanisinghss2110 |
Python3
# Python3 program for the above operation def addAfter( self , data, item): if ( self .last = = None ): return None temp = Node(data) p = self .last. next while p: if (p.data = = item): temp. next = p. next p. next = temp if (p = = self .last): self .last = temp return self .last else : return self .last p = p. next if (p = = self .last. next ): print (item, "not present in the list" ) break # This code is contributed by shivanisinghss2110 |
C#
// C# program for the above operation static Node addAfter(Node last, int data, int item) { if (last == null ) return null ; Node temp, p; p = last.next; do { if (p.data == item) { temp = new Node(); temp.data = data; temp.next = p.next; p.next = temp; if (p == last) last = temp; return last; } p = p.next; } while (p != last.next); Console.WriteLine(item + " not present in the list." ); return last; } // This code is contributed by shivanisinghss2110 |
Javascript
// Javascript program for the above operation function addAfter(last, data, item) { if (last == null ) return null ; var temp, p; p = last.next; do { if (p.data == item) { temp = new Node(); temp.data = data; temp.next = p.next; p.next = temp; if (p == last) last = temp; return last; } p = p.next; } while (p != last.next); document.write(item + " not present in the list. <br>" ); return last; } // This code is contributed by shivanisinghss2110 |
Time Complexity: O(N)
Auxiliary Space: O(1)
Below is a complete program that uses all of the above methods to create a circular singly linked list.
C++
// C++ program for the above methods #include <bits/stdc++.h> using namespace std; struct Node { int data; struct Node* next; }; struct Node* addToEmpty( struct Node* last, int data) { // This function is only for empty list if (last != NULL) return last; // Creating a node dynamically. struct Node* temp = ( struct Node*) malloc ( sizeof ( struct Node)); // Assigning the data. temp->data = data; last = temp; // Creating the link. last->next = last; return last; } struct Node* addBegin( struct Node* last, int data) { if (last == NULL) return addToEmpty(last, data); struct Node* temp = ( struct Node*) malloc ( sizeof ( struct Node)); temp->data = data; temp->next = last->next; last->next = temp; return last; } struct Node* addEnd( struct Node* last, int data) { if (last == NULL) return addToEmpty(last, data); struct Node* temp = ( struct Node*) malloc ( sizeof ( struct Node)); temp->data = data; temp->next = last->next; last->next = temp; last = temp; return last; } struct Node* addAfter( struct Node* last, int data, int item) { if (last == NULL) return NULL; struct Node *temp, *p; p = last->next; do { if (p->data == item) { temp = ( struct Node*) malloc ( sizeof ( struct Node)); temp->data = data; temp->next = p->next; p->next = temp; if (p == last) last = temp; return last; } p = p->next; } while (p != last->next); cout << item << " not present in the list." << endl; return last; } void traverse( struct Node* last) { struct Node* p; // If list is empty, return. if (last == NULL) { cout << "List is empty." << endl; return ; } // Pointing to first Node of the list. p = last->next; // Traversing the list. do { cout << p->data << " " ; p = p->next; } while (p != last->next); } // Driver code int main() { struct Node* last = NULL; last = addToEmpty(last, 6); last = addBegin(last, 4); last = addBegin(last, 2); last = addEnd(last, 8); last = addEnd(last, 12); last = addAfter(last, 10, 8); // Function call traverse(last); return 0; } |
Java
// Java program for the above methods public class GFG { static class Node { int data; Node next; }; static Node addToEmpty(Node last, int data) { // This function is only for empty list if (last != null ) return last; // Creating a node dynamically Node temp = new Node(); // Assigning the data. temp.data = data; last = temp; // Creating the link. last.next = last; return last; } static Node addBegin(Node last, int data) { if (last == null ) return addToEmpty(last, data); Node temp = new Node(); temp.data = data; temp.next = last.next; last.next = temp; return last; } static Node addEnd(Node last, int data) { if (last == null ) return addToEmpty(last, data); Node temp = new Node(); temp.data = data; temp.next = last.next; last.next = temp; last = temp; return last; } static Node addAfter(Node last, int data, int item) { if (last == null ) return null ; Node temp, p; p = last.next; do { if (p.data == item) { temp = new Node(); temp.data = data; temp.next = p.next; p.next = temp; if (p == last) last = temp; return last; } p = p.next; } while (p != last.next); System.out.println(item + " not present in the list." ); return last; } static void traverse(Node last) { Node p; // If list is empty, return. if (last == null ) { System.out.println( "List is empty." ); return ; } // Pointing to first Node of the list. p = last.next; // Traversing the list. do { System.out.print(p.data + " " ); p = p.next; } while (p != last.next); } // Driver code public static void main(String[] args) { Node last = null ; last = addToEmpty(last, 6 ); last = addBegin(last, 4 ); last = addBegin(last, 2 ); last = addEnd(last, 8 ); last = addEnd(last, 12 ); last = addAfter(last, 10 , 8 ); // Function call traverse(last); } } /* This code contributed by PrinciRaj1992 */ // This code is updated by Susobhan AKhuli |
Python3
# Python3 program for the above methods class Node: def __init__( self , data): self .data = data self . next = 0 class CircularLinkedList: def __init__( self ): self .last = None # This function is only for empty list def addToEmpty( self , data): if ( self .last ! = None ): return self .last # Creating the newnode temp temp = Node(data) self .last = temp # Creating the link self .last. next = self .last return self .last def addBegin( self , data): if ( self .last = = None ): return self .addToEmpty(data) temp = Node(data) temp. next = self .last. next self .last. next = temp return self .last def addEnd( self , data): if ( self .last = = None ): return self .addToEmpty(data) temp = Node(data) temp. next = self .last. next self .last. next = temp self .last = temp return self .last def addAfter( self , data, item): if ( self .last = = None ): return None temp = Node(data) p = self .last. next while p: if (p.data = = item): temp. next = p. next p. next = temp if (p = = self .last): self .last = temp return self .last else : return self .last p = p. next if (p = = self .last. next ): print (item, "not present in the list" ) break def traverse( self ): if ( self .last = = None ): print ( "List is empty" ) return temp = self .last. next while temp: print (temp.data, end = " " ) temp = temp. next if temp = = self .last. next : break # Driver Code if __name__ = = '__main__' : llist = CircularLinkedList() last = llist.addToEmpty( 6 ) last = llist.addBegin( 4 ) last = llist.addBegin( 2 ) last = llist.addEnd( 8 ) last = llist.addEnd( 12 ) last = llist.addAfter( 10 , 8 ) llist.traverse() # This code is contributed by # Aditya Singh |
C#
// C# program for the above methods using System; public class GFG { public class Node { public int data; public Node next; }; static Node addToEmpty(Node last, int data) { // This function is only for empty list if (last != null ) return last; // Creating a node dynamically. Node temp = new Node(); // Assigning the data. temp.data = data; last = temp; // Creating the link. last.next = last; return last; } static Node addBegin(Node last, int data) { if (last == null ) return addToEmpty(last, data); Node temp = new Node(); temp.data = data; temp.next = last.next; last.next = temp; return last; } static Node addEnd(Node last, int data) { if (last == null ) return addToEmpty(last, data); Node temp = new Node(); temp.data = data; temp.next = last.next; last.next = temp; last = temp; return last; } static Node addAfter(Node last, int data, int item) { if (last == null ) return null ; Node temp, p; p = last.next; do { if (p.data == item) { temp = new Node(); temp.data = data; temp.next = p.next; p.next = temp; if (p == last) last = temp; return last; } p = p.next; } while (p != last.next); Console.WriteLine(item + " not present in the list." ); return last; } static void traverse(Node last) { Node p; // If list is empty, return. if (last == null ) { Console.WriteLine( "List is empty." ); return ; } // Pointing to first Node of the list. p = last.next; // Traversing the list. do { Console.Write(p.data + " " ); p = p.next; } while (p != last.next); } // Driver code public static void Main(String[] args) { Node last = null ; last = addToEmpty(last, 6); last = addBegin(last, 4); last = addBegin(last, 2); last = addEnd(last, 8); last = addEnd(last, 12); last = addAfter(last, 10, 8); // Function call traverse(last); } } // This code contributed by Rajput-Ji |
Javascript
class Node { constructor() { this .data = 0; this .next = null ; } } function addToEmpty(last, data) { // This function is only for empty list if (last != null ) return last; // Creating a node dynamically. var temp = new Node(); // Assigning the data. temp.data = data; last = temp; // Creating the link. last.next = last; return last; } function addBegin(last, data) { if (last == null ) return addToEmpty(last, data); var temp = new Node(); temp.data = data; temp.next = last.next; last.next = temp; return last; } function addEnd(last, data) { if (last == null ) return addToEmpty(last, data); var temp = new Node(); temp.data = data; temp.next = last.next; last.next = temp; last = temp; return last; } function addAfter(last, data, item) { if (last == null ) return null ; var temp, p; p = last.next; do { if (p.data == item) { temp = new Node(); temp.data = data; temp.next = p.next; p.next = temp; if (p == last) last = temp; return last; } p = p.next; } while (p != last.next); document.write(item + " not present in the list. <br>" ); return last; } function traverse(last) { var p; // If list is empty, return. if (last == null ) { document.write( "List is empty.<br>" ); return ; } // Pointing to first Node of the list. p = last.next; // Traversing the list. do { document.write(p.data + " " ); p = p.next; } while (p != last.next); } // Driver code var last = null ; last = addToEmpty(last, 6); last = addBegin(last, 4); last = addBegin(last, 2); last = addEnd(last, 8); last = addEnd(last, 12); last = addAfter(last, 10, 8); traverse(last); |
2 4 6 8 10 12
Time Complexity: O(N)
Auxiliary Space: O(1), as we are not using any extra space.
This article is contributed by Anuj Chauhan. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!