Prerequisite – Circular Singly Linked List We have discussed basics and how to implement circular queue using array in set 1. Circular Queue | Set 1 (Introduction and Array Implementation) In this post another method of circular queue implementation is discussed, using Circular Singly Linked List.
Operations on Circular Queue:
- Front:Get the front item from queue.
- Rear: Get the last item from queue.
- enQueue(value) This function is used to insert an element into the circular queue. In a circular queue, the new element is always inserted at Rear position.
- Create a new node dynamically and insert value into it.
- Check if front==NULL, if it is true then front = rear = (newly created node)
- If it is false then rear=(newly created node) and rear node always contains the address of the front node.
- deQueue() This function is used to delete an element from the circular queue. In a queue, the element is always deleted from front position.
- Check whether queue is empty or not means front == NULL.
- If it is empty then display Queue is empty. If queue is not empty then step 3
- Check if (front==rear) if it is true then set front = rear = NULL else move the front forward in queue, update address of front in rear node and return the element.
Below is the implementation of the above approach:
C++
// C++ program for insertion and // deletion in Circular Queue #include <bits/stdc++.h> using namespace std; // Structure of a Node struct Node { int data; struct Node* link; }; struct Queue { struct Node *front, *rear; }; // Function to create Circular queue void enQueue(Queue* q, int value) { struct Node* temp = new Node; temp->data = value; if (q->front == NULL) q->front = temp; else q->rear->link = temp; q->rear = temp; q->rear->link = q->front; } // Function to delete element from Circular Queue int deQueue(Queue* q) { if (q->front == NULL) { cout << "Queue is empty" ; return INT_MIN; } // If this is the last node to be deleted int value; // Value to be dequeued if (q->front == q->rear) { value = q->front->data; free (q->front); q->front = NULL; q->rear = NULL; } else // There are more than one nodes { struct Node* temp = q->front; value = temp->data; q->front = q->front->link; q->rear->link = q->front; free (temp); } return value; } // Function displaying the elements of Circular Queue void displayQueue( struct Queue* q) { struct Node* temp = q->front; cout << endl << "Elements in Circular Queue are: " ; while (temp->link != q->front) { cout << temp->data << " " ; temp = temp->link; } cout << temp->data; } /* Driver of the program */ int main() { // Create a queue and initialize front and rear Queue* q = new Queue; q->front = q->rear = NULL; // Inserting elements in Circular Queue enQueue(q, 14); enQueue(q, 22); enQueue(q, 6); // Display elements present in Circular Queue displayQueue(q); // Deleting elements from Circular Queue cout << endl << "Deleted value = " << deQueue(q); cout << endl << "Deleted value = " << deQueue(q); // Remaining elements in Circular Queue displayQueue(q); enQueue(q, 9); enQueue(q, 20); displayQueue(q); return 0; } |
Java
// Java program for insertion and // deletion in Circular Queue import java.io.*; import java.util.*; public class Solution { // Structure of a Node static class Node { int data; Node link; } static class Queue { Node front, rear; } // Function to create Circular queue static void enQueue(Queue q, int value) { Node temp = new Node(); temp.data = value; if (q.front == null ) q.front = temp; else q.rear.link = temp; q.rear = temp; q.rear.link = q.front; } // Function to delete element from Circular Queue static int deQueue(Queue q) { if (q.front == null ) { System.out.printf( "Queue is empty" ); return Integer.MIN_VALUE; } // If this is the last node to be deleted int value; // Value to be dequeued if (q.front == q.rear) { value = q.front.data; q.front = null ; q.rear = null ; } else // There are more than one nodes { Node temp = q.front; value = temp.data; q.front = q.front.link; q.rear.link = q.front; } return value; } // Function displaying the elements of Circular Queue static void displayQueue(Queue q) { Node temp = q.front; System.out.printf( "\nElements in Circular Queue are: " ); while (temp.link != q.front) { System.out.printf( "%d " , temp.data); temp = temp.link; } System.out.printf( "%d" , temp.data); } /* Driver of the program */ public static void main(String args[]) { // Create a queue and initialize front and rear Queue q = new Queue(); q.front = q.rear = null ; // Inserting elements in Circular Queue enQueue(q, 14 ); enQueue(q, 22 ); enQueue(q, 6 ); // Display elements present in Circular Queue displayQueue(q); // Deleting elements from Circular Queue System.out.printf( "\nDeleted value = %d" , deQueue(q)); System.out.printf( "\nDeleted value = %d" , deQueue(q)); // Remaining elements in Circular Queue displayQueue(q); enQueue(q, 9 ); enQueue(q, 20 ); displayQueue(q); } } // This code is contributed // by Arnab Kundu |
Python3
# Python3 program for insertion and # deletion in Circular Queue # Structure of a Node class Node: def __init__( self ): self .data = None self .link = None class Queue: def __init__( self ): front = None rear = None # Function to create Circular queue def enQueue(q, value): temp = Node() temp.data = value if (q.front = = None ): q.front = temp else : q.rear.link = temp q.rear = temp q.rear.link = q.front # Function to delete element from # Circular Queue def deQueue(q): if (q.front = = None ): print ( "Queue is empty" ) return - 999999999999 # If this is the last node to be deleted value = None # Value to be dequeued if (q.front = = q.rear): value = q.front.data q.front = None q.rear = None else : # There are more than one nodes temp = q.front value = temp.data q.front = q.front.link q.rear.link = q.front return value # Function displaying the elements # of Circular Queue def displayQueue(q): temp = q.front print ( "Elements in Circular Queue are: " , end = " " ) while (temp.link ! = q.front): print (temp.data, end = " " ) temp = temp.link print (temp.data) # Driver Code if __name__ = = '__main__' : # Create a queue and initialize # front and rear q = Queue() q.front = q.rear = None # Inserting elements in Circular Queue enQueue(q, 14 ) enQueue(q, 22 ) enQueue(q, 6 ) # Display elements present in # Circular Queue displayQueue(q) # Deleting elements from Circular Queue print ( "Deleted value = " , deQueue(q)) print ( "Deleted value = " , deQueue(q)) # Remaining elements in Circular Queue displayQueue(q) enQueue(q, 9 ) enQueue(q, 20 ) displayQueue(q) # This code is contributed by PranchalK |
C#
// C# program for insertion and // deletion in Circular Queue using System; using System.Collections.Generic; public class GFG { // Structure of a Node public class Node { public int data; public Node link; } public class LinkedList { public Node front, rear; } // Function to create Circular queue public static void enQueue(LinkedList q, int value) { Node temp = new Node(); temp.data = value; if (q.front == null ) { q.front = temp; } else { q.rear.link = temp; } q.rear = temp; q.rear.link = q.front; } // Function to delete element from // Circular Queue public static int deQueue(LinkedList q) { if (q.front == null ) { Console.Write( "Queue is empty" ); return int .MinValue; } // If this is the last node to be deleted int value; // Value to be dequeued if (q.front == q.rear) { value = q.front.data; q.front = null ; q.rear = null ; } else // There are more than one nodes { Node temp = q.front; value = temp.data; q.front = q.front.link; q.rear.link = q.front; } return value; } // Function displaying the elements // of Circular Queue public static void displayQueue(LinkedList q) { Node temp = q.front; Console.Write( "\nElements in Circular Queue are: " ); while (temp.link != q.front) { Console.Write( "{0:D} " , temp.data); temp = temp.link; } Console.Write( "{0:D}" , temp.data); } // Driver Code public static void Main( string [] args) { // Create a queue and initialize // front and rear LinkedList q = new LinkedList(); q.front = q.rear = null ; // Inserting elements in Circular Queue enQueue(q, 14); enQueue(q, 22); enQueue(q, 6); // Display elements present in // Circular Queue displayQueue(q); // Deleting elements from Circular Queue Console.Write( "\nDeleted value = {0:D}" , deQueue(q)); Console.Write( "\nDeleted value = {0:D}" , deQueue(q)); // Remaining elements in Circular Queue displayQueue(q); enQueue(q, 9); enQueue(q, 20); displayQueue(q); } } // This code is contributed by Shrikant13 |
Javascript
// Javascript program for insertion and deletion in Circular Queue // Structure of a Node class Node { constructor() { this .data; this .node; } } class Queue { constructor() { this .front; this .rear; } } // Function to create Circular queue function enQueue(q, value) { temp = new Node(); temp.data = value; if (q.front == null ) q.front = temp; else q.rear.link = temp; q.rear = temp; q.rear.link = q.front; } // Function to delete element from Circular Queue function deQueue(q) { if (q.front == null ) { console.log( "Queue is empty" ); return Number.MIN_VALUE; } // If this is the last node to be deleted let value; // Value to be dequeued if (q.front == q.rear) { value = q.front.data; q.front = null ; q.rear = null ; } // There are more than one nodes else { temp = q.front; value = temp.data; q.front = q.front.link; q.rear.link = q.front; } return value; } // Function displaying the elements of Circular Queue function displayQueue(q) { temp = q.front; console.log( "Elements in Circular Queue are: " ); while (temp.link != q.front) { console.log(temp.data); temp = temp.link; } console.log(temp.data); } /* Driver of the program */ // Create a queue and initialize front and rear q = new Queue(); q.front = q.rear = null ; // Inserting elements in Circular Queue enQueue(q, 14); enQueue(q, 22); enQueue(q, 6); // Display elements present in Circular Queue displayQueue(q); // Deleting elements from Circular Queue console.log( "Deleted value = " + deQueue(q)); console.log( "Deleted value = " + deQueue(q)); // Remaining elements in Circular Queue displayQueue(q); enQueue(q, 9); enQueue(q, 20); displayQueue(q); |
Elements in Circular Queue are: 14 22 6 Deleted value = 14 Deleted value = 22 Elements in Circular Queue are: 6 Elements in Circular Queue are: 6 9 20
Time Complexity: Time complexity of enQueue(), deQueue() operation is O(1) as there is no loop in any of the operation.
Auxiliary Space: O(n) where n is the maximum number of elements that can be stored in the queue.
Note: In case of linked list implementation, a queue can be easily implemented without being circular. However, in the case of array implementation, we need a circular queue to save space.
This article is contributed by Akash Gupta. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!