Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICheck whether a binary tree is a full binary tree or not

Check whether a binary tree is a full binary tree or not

A full binary tree is defined as a binary tree in which all nodes have either zero or two child nodes. Conversely, there is no node in a full binary tree, which has one child node. More information about full binary trees can be found here.

For Example : 
 

Full

Recommended Practice

To check whether a binary tree is a full binary tree we need to test the following cases:-

  1. If a binary tree node is NULL then it is a full binary tree. 
  2. If a binary tree node does have empty left and right sub-trees, then it is a full binary tree by definition. 
  3. If a binary tree node has left and right sub-trees, then it is a part of a full binary tree by definition. In this case recursively check if the left and right sub-trees are also binary trees themselves. 
  4. In all other combinations of right and left sub-trees, the binary tree is not a full binary tree.

Following is the implementation for checking if a binary tree is a full binary tree.

C++




// C++ program to check whether a given Binary Tree is full or not
#include <bits/stdc++.h>
 
using namespace std;
  
/*  Tree node structure */
struct Node
{
    int key;
    struct Node *left, *right;
};
  
/* Helper function that allocates a new node with the
   given key and NULL left and right pointer. */
struct Node *newNode(char k)
{
    struct Node *node = new  Node;
    node->key = k;
    node->right = node->left = NULL;
    return node;
}
  
/* This function tests if a binary tree is a full binary tree. */
bool isFullTree (struct Node* root)
{
    // If empty tree
    if (root == NULL)
        return true;
  
    // If leaf node
    if (root->left == NULL && root->right == NULL)
        return true;
  
    // If both left and right are not NULL, and left & right subtrees
    // are full
    if ((root->left) && (root->right))
        return (isFullTree(root->left) && isFullTree(root->right));
  
    // We reach here when none of the above if conditions work
    return false;
}
  
// Driver Program
int main()
{
    struct Node* root = NULL;
    root = newNode(10);
    root->left = newNode(20);
    root->right = newNode(30);
  
    root->left->right = newNode(40);
    root->left->left = newNode(50);
    root->right->left = newNode(60);
    root->right->right = newNode(70);
  
    root->left->left->left = newNode(80);
    root->left->left->right = newNode(90);
    root->left->right->left = newNode(80);
    root->left->right->right = newNode(90);
    root->right->left->left = newNode(80);
    root->right->left->right = newNode(90);
    root->right->right->left = newNode(80);
    root->right->right->right = newNode(90);
  
    if (isFullTree(root))
        cout << "The Binary Tree is full\n";
    else
        cout << "The Binary Tree is not full\n";
  
    return(0);
}
 
// This code is contributed by shubhamsingh10


C




// C program to check whether a given Binary Tree is full or not
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
 
/*  Tree node structure */
struct Node
{
    int key;
    struct Node *left, *right;
};
 
/* Helper function that allocates a new node with the
   given key and NULL left and right pointer. */
struct Node *newNode(char k)
{
    struct Node *node = (struct Node*)malloc(sizeof(struct Node));
    node->key = k;
    node->right = node->left = NULL;
    return node;
}
 
/* This function tests if a binary tree is a full binary tree. */
bool isFullTree (struct Node* root)
{
    // If empty tree
    if (root == NULL)
        return true;
 
    // If leaf node
    if (root->left == NULL && root->right == NULL)
        return true;
 
    // If both left and right are not NULL, and left & right subtrees
    // are full
    if ((root->left) && (root->right))
        return (isFullTree(root->left) && isFullTree(root->right));
 
    // We reach here when none of the above if conditions work
    return false;
}
 
// Driver Program
int main()
{
    struct Node* root = NULL;
    root = newNode(10);
    root->left = newNode(20);
    root->right = newNode(30);
 
    root->left->right = newNode(40);
    root->left->left = newNode(50);
    root->right->left = newNode(60);
    root->right->right = newNode(70);
 
    root->left->left->left = newNode(80);
    root->left->left->right = newNode(90);
    root->left->right->left = newNode(80);
    root->left->right->right = newNode(90);
    root->right->left->left = newNode(80);
    root->right->left->right = newNode(90);
    root->right->right->left = newNode(80);
    root->right->right->right = newNode(90);
 
    if (isFullTree(root))
        printf("The Binary Tree is full\n");
    else
        printf("The Binary Tree is not full\n");
 
    return(0);
}


Java




// Java program to check if binary tree is full or not
 
/*  Tree node structure */
class Node
{
    int data;
    Node left, right;
  
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
class BinaryTree
{
    Node root;
      
    /* this function checks if a binary tree is full or not */
    boolean isFullTree(Node node)
    {
        // if empty tree
        if(node == null)
        return true;
          
        // if leaf node
        if(node.left == null && node.right == null )
            return true;
          
        // if both left and right subtrees are not null
        // they are full
        if((node.left!=null) && (node.right!=null))
            return (isFullTree(node.left) && isFullTree(node.right));
          
        // if none work
        return false;
    }
  
      
    // Driver program
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(20);
        tree.root.right = new Node(30);
        tree.root.left.right = new Node(40);
        tree.root.left.left = new Node(50);
        tree.root.right.left = new Node(60);
        tree.root.left.left.left = new Node(80);
        tree.root.right.right = new Node(70);
        tree.root.left.left.right = new Node(90);
        tree.root.left.right.left = new Node(80);
        tree.root.left.right.right = new Node(90);
        tree.root.right.left.left = new Node(80);
        tree.root.right.left.right = new Node(90);
        tree.root.right.right.left = new Node(80);
        tree.root.right.right.right = new Node(90);
          
        if(tree.isFullTree(tree.root))
            System.out.print("The binary tree is full");
        else
            System.out.print("The binary tree is not full");
    }
}
  
// This code is contributed by Mayank Jaiswal


Python3




# Python program to check whether given Binary tree is full or not
 
# Tree node structure
class Node:
 
    # Constructor of the node class for creating the node
    def __init__(self , key):
        self.key = key
        self.left = None
        self.right = None
 
# Checks if the binary tree is full or not
def isFullTree(root):
 
    # If empty tree
    if root is None:   
        return True
     
    # If leaf node
    if root.left is None and root.right is None:
        return True
 
    # If both left and right subtress are not None and
    # left and right subtress are full
    if root.left is not None and root.right is not None:
        return (isFullTree(root.left) and isFullTree(root.right))
     
    # We reach here when none of the above if conditions work
    return False
 
# Driver Program
root = Node(10);
root.left = Node(20);
root.right = Node(30);
 
root.left.right = Node(40);
root.left.left = Node(50);
root.right.left = Node(60);
root.right.right = Node(70);
 
root.left.left.left = Node(80);
root.left.left.right = Node(90);
root.left.right.left = Node(80);
root.left.right.right = Node(90);
root.right.left.left = Node(80);
root.right.left.right = Node(90);
root.right.right.left = Node(80);
root.right.right.right = Node(90);
 
if isFullTree(root):
    print ("The Binary tree is full")
else:
    print ("Binary tree is not full")
 
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)


C#




// C# program to check if binary tree
// is full or not
using System;
 
/* Tree node structure */
public class Node
{
    public int data;
    public Node left, right;
 
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class GFG
{
public Node root;
 
/* This function checks if a binary
tree is full or not */
public virtual bool isFullTree(Node node)
{
    // if empty tree
    if (node == null)
    {
    return true;
    }
 
    // if leaf node
    if (node.left == null && node.right == null)
    {
        return true;
    }
 
    // if both left and right subtrees
    // are not null they are full
    if ((node.left != null) && (node.right != null))
    {
        return (isFullTree(node.left) &&
                isFullTree(node.right));
    }
 
    // if none work
    return false;
}
 
// Driver Code
public static void Main(string[] args)
{
    GFG tree = new GFG();
    tree.root = new Node(10);
    tree.root.left = new Node(20);
    tree.root.right = new Node(30);
    tree.root.left.right = new Node(40);
    tree.root.left.left = new Node(50);
    tree.root.right.left = new Node(60);
    tree.root.left.left.left = new Node(80);
    tree.root.right.right = new Node(70);
    tree.root.left.left.right = new Node(90);
    tree.root.left.right.left = new Node(80);
    tree.root.left.right.right = new Node(90);
    tree.root.right.left.left = new Node(80);
    tree.root.right.left.right = new Node(90);
    tree.root.right.right.left = new Node(80);
    tree.root.right.right.right = new Node(90);
 
    if (tree.isFullTree(tree.root))
    {
        Console.Write("The binary tree is full");
    }
    else
    {
        Console.Write("The binary tree is not full");
    }
}
}
 
// This code is contributed by Shrikant13


Javascript




<script>
// javascript program to check if binary tree is full or not
 
/*  Tree node structure */
class Node {
    constructor(item) {
        this.data = item;
        this.left = this.right = null;
    }
}
 
 
    var root;
 
    /* this function checks if a binary tree is full or not */
    function isFullTree( node) {
        // if empty tree
        if (node == null)
            return true;
 
        // if leaf node
        if (node.left == null && node.right == null)
            return true;
 
        // if both left and right subtrees are not null
        // they are full
        if ((node.left != null) && (node.right != null))
            return (isFullTree(node.left) && isFullTree(node.right));
 
        // if none work
        return false;
    }
 
    // Driver program
     
     
        root = new Node(10);
        root.left = new Node(20);
        root.right = new Node(30);
        root.left.right = new Node(40);
        root.left.left = new Node(50);
        root.right.left = new Node(60);
        root.left.left.left = new Node(80);
        root.right.right = new Node(70);
        root.left.left.right = new Node(90);
        root.left.right.left = new Node(80);
        root.left.right.right = new Node(90);
        root.right.left.left = new Node(80);
        root.right.left.right = new Node(90);
        root.right.right.left = new Node(80);
        root.right.right.right = new Node(90);
         if(isFullTree(root))
            document.write("The binary tree is full");
        else
            document.write("The binary tree is not full");
             
// This code contributed by gauravrajput1
</script>


Output

The Binary Tree is full

Time complexity: O(n) where n is number of nodes in given binary tree.
Auxiliary Space: O(n) for call stack since using recursion

Iterative Approach:

To check whether a binary tree is a full binary tree we need to test the following cases:-

  1. Create a queue to store nodes
  2. Store the root of the tree in the queue
  3. Traverse until the queue is not empty
    1. If the current node is not a leaf insert root->left and root->right in the queue.
    2. If the current node is NULL return false.
  4. If the queue is empty return true.

Following is the implementation for checking if a binary tree is a full binary tree.

C++




// c++ program to check whether a given BT is full or not
#include <bits/stdc++.h>
using namespace std;
 
// Tree node structure
struct Node {
    int val;
    Node *left, *right;
};
 
// fun that creates and returns a new node
Node* newNode(int data)
{
    Node* node = new Node();
    node->val = data;
    node->left = node->right = NULL;
    return node;
}
 
// helper fun to check leafnode
bool isleafnode(Node* root)
{
    return !root->left && !root->right;
}
 
// fun checks whether the given BT is a full BT or not
bool isFullTree(Node* root)
{
    // if tree is empty
    if (!root)
        return true;
 
    queue<Node*> q;
    q.push(root);
 
    while (!q.empty()) {
 
        root = q.front();
        q.pop();
 
        // null indicates - not a full BT
        if (root == NULL)
            return false;
 
        // if its not a leafnode then the current node
        // should contain both left and right pointers.
        if (!isleafnode(root)) {
            q.push(root->left);
            q.push(root->right);
        }
    }
 
    return true;
}
 
int main()
{
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
 
    if (isFullTree(root))
        cout << "The Binary Tree is full\n";
    else
        cout << "The Binary Tree is not full\n";
 
    return 0;
}
// This code is contributed by Modem Upendra.


Java




// Java program to check whether a given BT is full or not
import java.util.ArrayDeque;
import java.util.Queue;
 
public class GFG
{
 
  /*  Tree node structure */
  static class Node {
    int data;
    Node left, right;
 
    Node(int item)
    {
      data = item;
      left = right = null;
    }
  }
 
  // helper fun to check leafnode
  static boolean isleafnode(Node root)
  {
    return root.left == null && root.right == null;
  }
 
  // fun checks whether the given BT is a full BT or not
  static boolean isFullTree(Node root)
  {
 
    // if tree is empty
    if (root == null)
      return true;
 
    Queue<Node> q = new ArrayDeque<>();
    q.add(root);
 
    while (!q.isEmpty()) {
 
      root = q.peek();
      q.remove();
 
      // null indicates - not a full BT
      if (root == null)
        return false;
 
      // if its not a leafnode then the current node
      // should contain both left and right pointers.
      if (!isleafnode(root)) {
        q.add(root.left);
        q.add(root.right);
      }
    }
 
    return true;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    Node root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.left.right = new Node(5);
 
    if (isFullTree(root))
      System.out.println("The Binary Tree is full");
    else
      System.out.println(
      "The Binary Tree is not full");
  }
}
 
// This code is contributed by karandeep1234


Python3




# Python program to check whether a given BT is full or not
# Tree Structure
class Node:
    def __init__(self, key):
        self.data = key
        self.left = None
        self.right = None
 
# function that creates and returns a new node
def newNode(data):
    node = Node(data)
    return node
 
# helper function to check leafnode
def isleafnode(root):
    return root.left is not None and root.right is not None
 
# function checks whether the given BT is a full BT or not
def isFullTree(root):
    # if tree is empty
    if root is None:
        return True
 
    q = []
    q.append(root)
 
    while(len(q) > 0):
        root = q.pop(0)
 
        # null indicates - not a full BT
        if root is None:
            return False
 
        # if its not a leafnode then the current node
        # should contain both left and right pointers
        if isleafnode(root) is False:
            q.append(root.left)
            q.append(root.right)
 
    return True
 
# Driver program to test above function
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(5)
 
if isFullTree(root) is True:
    print("The Binary Tree is full")
else:
    print("The Binary Tree is not full")
 
# This code is contributed by Yash Agarwal(yashagarwal2852002)


C#




// C# program to check whether a given BT is full or not
 
using System;
using System.Collections.Generic;
 
public class GFG {
 
    /*  Tree node structure */
    public class Node {
        public int data;
        public Node left, right;
 
        public Node(int item)
        {
            data = item;
            left = right = null;
        }
    }
 
    // helper fun to check leafnode
    static bool isleafnode(Node root)
    {
        return root.left == null && root.right == null;
    }
 
    // fun checks whether the given BT is a full BT or not
    static bool isFullTree(Node root)
    {
 
        // if tree is empty
        if (root == null)
            return true;
 
        Queue<Node> q = new Queue<Node>();
        q.Enqueue(root);
 
        while (q.Count != 0) {
 
            root = q.Dequeue();
 
            // null indicates - not a full BT
            if (root == null)
                return false;
 
            // if its not a leafnode then the current node
            // should contain both left and right pointers.
            if (!isleafnode(root)) {
                q.Enqueue(root.left);
                q.Enqueue(root.right);
            }
        }
 
        return true;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.left.left = new Node(4);
        root.left.right = new Node(5);
 
        if (isFullTree(root))
            Console.WriteLine("The Binary Tree is full");
        else
            Console.WriteLine(
                "The Binary Tree is not full");
    }
}
// This code is contributed by karandeep1234.


Javascript




// JAVASCRIPT program to check whether a given BT is full or not
class Queue {
    constructor() {
        this.items = [];
    }
     
    // add element to the queue
    enqueue(element) {
        return this.items.push(element);
    }
     
    // remove element from the queue
    dequeue() {
        if(this.items.length > 0) {
            return this.items.shift();
        }
    }
     
    // view the last element
    peek() {
        return this.items[0];
    }
     
    // check if the queue is empty
    isEmpty(){
       return this.items.length == 0;
    }
    
    // the size of the queue
    size(){
        return this.items.length;
    }
  
    // empty the queue
    clear(){
        this.items = [];
    }
}
// Tree node structure
class Node {
    constructor(item) {
        this.data = item;
        this.left = this.right = null;
    }
}
 
// helper fun to check leafnode
function isleafnode(root)
{
    if(root.left==null && root.right==null)
        return true;
    return false;
     
}
 
// fun checks whether the given BT is a full BT or not
function isFullTree( root)
{
    // if tree is empty
    if (root==null)
        return true;
  let q = new Queue();
    q.enqueue(root)
    while (q.size()!=0) {
 
        root = q.peek();
        q.dequeue();
        // null indicates - not a full BT
        if (root == null)
            return false;
         
        // if its not a leafnode then the current node
        // should contain both left and right pointers.
        if (isleafnode(root)==false) {
            q.enqueue(root.left);
            q.enqueue(root.right);
        }
    }
 
    return true;
}
 
    let root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.left.right = new Node(5);
 
    if (isFullTree(root)== true)
        console.log("The Binary Tree is full");
    else
        console.log("The Binary Tree is not full");
 
   // This code is contributed by garg28harsh.


Output

The Binary Tree is full

Time Complexity: O(N), Where N is the total nodes in a given binary tree.
Auxiliary Space: O(N), in most cases the last level contains nodes as half of the total nodes. O(N/2) ~ O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments