Given two binary arrays arr1[] and arr2[] of the same size, the task is to make both the arrays equal by swapping pairs of arr1[ ] only if arr1[i] = 0 and arr1[j] = 1 (0 ? i < j < N)). If it is possible to make both the arrays equal, print “Yes”. Otherwise, print “No”.
Examples:
Input: arr1[] = {0, 0, 1, 1}, arr2[] = {1, 1, 0, 0}
Output: Yes
Explanation:
Swap arr1[1] and arr1[3], it becomes arr1[] = {0, 1, 1, 0}.
Swap arr1[0] and arr1[2], it becomes arr1[] = {1, 1, 0, 0}.Input: arr1[] = {1, 0, 1, 0, 1}, arr2[] = {0, 1, 0, 0, 1}
Output: No
Approach: Follow the steps below to solve the problem:
- Initialize two variable, say count and flag (= true).
- Traverse the array and for every array element, perform the following operations:
- If arr1[i] != arr2[i]:
- If arr1[i] == 0, increment count by 1.
- Otherwise, decrement count by 1 and if count < 0, update flag = false.
- If arr1[i] != arr2[i]:
- If flag is equal to true, print “Yes”. Otherwise, print “No”.
Below is the implementation of the above approach:
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function to check if two arrays // can be made equal or not by swapping // pairs of only one of the arrays void checkArrays( int arr1[], int arr2[], int N) { // Stores elements required // to be replaced int count = 0; // To check if the arrays // can be made equal or not bool flag = true ; // Traverse the array for ( int i = 0; i < N; i++) { // If array elements are not equal if (arr1[i] != arr2[i]) { if (arr1[i] == 0) // Increment count by 1 count++; else { // Decrement count by 1 count--; if (count < 0) { flag = 0; break ; } } } } // If flag is true and count is 0, // print "Yes". Otherwise "No" if (flag && count == 0) cout << "Yes" << endl; else cout << "No" << endl; } // Driver Code int main() { // Given arrays int arr1[] = { 0, 0, 1, 1 }; int arr2[] = { 1, 1, 0, 0 }; // Size of the array int N = sizeof (arr1) / sizeof (arr1[0]); checkArrays(arr1, arr2, N); return 0; } |
Java
// Java program for above approach public class GFG { // Function to check if two arrays // can be made equal or not by swapping // pairs of only one of the arrays static void checkArrays( int arr1[], int arr2[], int N) { // Stores elements required // to be replaced int count = 0 ; // To check if the arrays // can be made equal or not boolean flag = true ; // Traverse the array for ( int i = 0 ; i < N; i++) { // If array elements are not equal if (arr1[i] != arr2[i]) { if (arr1[i] == 0 ) // Increment count by 1 count++; else { // Decrement count by 1 count--; if (count < 0 ) { flag = false ; break ; } } } } // If flag is true and count is 0, // print "Yes". Otherwise "No" if ((flag && (count == 0 )) == true ) System.out.println( "Yes" ); else System.out.println( "No" ); } // Driver Code public static void main (String[] args) { // Given arrays int arr1[] = { 0 , 0 , 1 , 1 }; int arr2[] = { 1 , 1 , 0 , 0 }; // Size of the array int N = arr1.length; checkArrays(arr1, arr2, N); } } // This code is contributed by AnkThon |
Python3
# Python3 program for above approach # Function to check if two arrays # can be made equal or not by swapping # pairs of only one of the arrays def checkArrays(arr1, arr2, N): # Stores elements required # to be replaced count = 0 # To check if the arrays # can be made equal or not flag = True # Traverse the array for i in range (N): # If array elements are not equal if (arr1[i] ! = arr2[i]): if (arr1[i] = = 0 ): # Increment count by 1 count + = 1 else : # Decrement count by 1 count - = 1 if (count < 0 ): flag = 0 break # If flag is true and count is 0, # pr"Yes". Otherwise "No" if (flag and count = = 0 ): print ( "Yes" ) else : print ( "No" ) # Driver Code if __name__ = = '__main__' : # Given arrays arr1 = [ 0 , 0 , 1 , 1 ] arr2 = [ 1 , 1 , 0 , 0 ] # Size of the array N = len (arr1) checkArrays(arr1, arr2, N) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; class GFG{ // Function to check if two arrays // can be made equal or not by swapping // pairs of only one of the arrays static void checkArrays( int [] arr1, int [] arr2, int N) { // Stores elements required // to be replaced int count = 0; // To check if the arrays // can be made equal or not bool flag = true ; // Traverse the array for ( int i = 0; i < N; i++) { // If array elements are not equal if (arr1[i] != arr2[i]) { if (arr1[i] == 0) // Increment count by 1 count++; else { // Decrement count by 1 count--; if (count < 0) { flag = false ; break ; } } } } // If flag is true and count is 0, // print "Yes". Otherwise "No" if ((flag && (count == 0)) == true ) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } // Driver Code static public void Main() { // Given arrays int [] arr1 = { 0, 0, 1, 1 }; int [] arr2 = { 1, 1, 0, 0 }; // Size of the array int N = arr1.Length; checkArrays(arr1, arr2, N); } } // This code is contributed by susmitakundugoaldanga. |
Javascript
<script> // Java script program for above approach // Function to check if two arrays // can be made equal or not by swapping // pairs of only one of the arrays function checkArrays(arr1,arr2,N) { // Stores elements required // to be replaced let count = 0; // To check if the arrays // can be made equal or not let flag = true ; // Traverse the array for (let i = 0; i < N; i++) { // If array elements are not equal if (arr1[i] != arr2[i]) { if (arr1[i] == 0) // Increment count by 1 count++; else { // Decrement count by 1 count--; if (count < 0) { flag = false ; break ; } } } } // If flag is true and count is 0, // print "Yes". Otherwise "No" if ((flag && (count == 0)) == true ) document.write( "Yes" ); else document.write( "No" ); } // Driver Code // Given arrays let arr1 = [ 0, 0, 1, 1 ]; let arr2 = [ 1, 1, 0, 0 ]; // Size of the array let N = arr1.length; checkArrays(arr1, arr2, N); // This code is contributed by Gottumukkala Sravan Kumar (171fa07058) </script> |
Yes
Time Complexity: O(N)
Auxiliary Space: O(1)
Another Approach:
- Define two binary arrays arr1[] and arr2[] of the same size.
- Calculate the size of the arrays using the sizeof() operator and store it in the variable n.
- Initialize three integer variables zero_count, one_count, and mismatch_count to zero.
- Use a for loop to iterate through the arrays from 0 to n-1.
- Inside the for loop, check if the current element of arr1 is zero. If yes, increment the zero_count variable. Otherwise, increment the one_count variable.
- Also inside the for loop, check if the current element of arr1 is not equal to the current element of arr2. If yes, increment the mismatch_count variable.
- After the for loop, check if the zero_count and one_count variables are equal and the mismatch_count variable is even. If yes, print “Yes”. Otherwise, print “No”.
- End the program.
Below is the implementation of the above approach:
C++
#include <iostream> using namespace std; int main() { int arr1[] = {0, 0, 1, 1}; int arr2[] = {1, 1, 0, 0}; int n = sizeof (arr1) / sizeof (arr1[0]); // calculate size of arrays int zero_count = 0, one_count = 0, mismatch_count = 0; for ( int i = 0; i < n; i++) { if (arr1[i] == 0) { zero_count++; // count the number of zeros in arr1 } else { one_count++; // count the number of ones in arr1 } if (arr1[i] != arr2[i]) { mismatch_count++; // count the number of mismatches between arr1 and arr2 } } if (zero_count == one_count && mismatch_count % 2 == 0) { cout << "Yes" ; // if the number of zeros and ones in arr1 are equal and the number of mismatches is even, we can make both arrays equal by swapping pairs of arr1 } else { cout << "No" ; // otherwise, we cannot make both arrays equal by swapping pairs of arr1 } return 0; } // This code is contributed by rudra1807raj |
Java
public class Main { public static void main(String[] args) { int [] arr1 = { 0 , 0 , 1 , 1 }; int [] arr2 = { 1 , 1 , 0 , 0 }; int n = arr1.length; // Calculate the size of arrays int zeroCount = 0 , oneCount = 0 , mismatchCount = 0 ; for ( int i = 0 ; i < n; i++) { if (arr1[i] == 0 ) { zeroCount++; // Count the number of zeros in arr1 } else { oneCount++; // Count the number of ones in arr1 } if (arr1[i] != arr2[i]) { mismatchCount++; // Count the number of mismatches between arr1 and arr2 } } if (zeroCount == oneCount && mismatchCount % 2 == 0 ) { System.out.println( "Yes" ); // If the number of zeros and ones in arr1 are equal and the number of mismatches is even, we can make both arrays equal by swapping pairs of arr1 } else { System.out.println( "No" ); // Otherwise, we cannot make both arrays equal by swapping pairs of arr1 } } } //This code is Contributed by chinmaya121221 |
Python3
# Given arrays arr1 = [ 0 , 0 , 1 , 1 ] arr2 = [ 1 , 1 , 0 , 0 ] n = len (arr1) # calculate size of arrays zero_count = 0 one_count = 0 mismatch_count = 0 # Loop through each element of the arrays for i in range (n): # Count the number of zeros in arr1 if arr1[i] = = 0 : zero_count + = 1 else : one_count + = 1 # Count the number of ones in arr1 # Count the number of mismatches between arr1 and arr2 if arr1[i] ! = arr2[i]: mismatch_count + = 1 # Check the conditions to determine if it's possible to make both arrays equal if zero_count = = one_count and mismatch_count % 2 = = 0 : print ( "Yes" ) # If conditions are met, we can make both arrays equal by swapping pairs of arr1 else : print ( "No" ) # Otherwise, we cannot make both arrays equal by swapping pairs of arr1 |
C#
using System; class Program { static void Main() { int [] arr1 = { 0, 0, 1, 1 }; int [] arr2 = { 1, 1, 0, 0 }; int n = arr1.Length; // Calculate the size of arrays int zeroCount = 0, oneCount = 0, mismatchCount = 0; for ( int i = 0; i < n; i++) { if (arr1[i] == 0) { zeroCount++; // Count the number of zeros in arr1 } else { oneCount++; // Count the number of ones in arr1 } if (arr1[i] != arr2[i]) { mismatchCount++; // Count the number of mismatches between arr1 and arr2 } } if (zeroCount == oneCount && mismatchCount % 2 == 0) { Console.WriteLine( "Yes" ); // If the number of zeros and ones // in arr1 are equal and the number of mismatches is // even, we can make both arrays equal by swapping // pairs of arr1 } else { Console.WriteLine( "No" ); // Otherwise, we cannot make both arrays // equal by swapping pairs of arr1 } } } |
Output:
Yes
Time Complexity: The time complexity of the given code is O(n), where n is the size of the arrays. This is because the code uses a single loop to iterate through both arrays, and each operation inside the loop takes constant time.
Auxiliary Space: The space complexity of the code is O(1), as it uses only a few variables to store the counts and does not allocate any additional memory based on the input size.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!