Saturday, November 16, 2024
Google search engine
HomeData Modelling & AICheck if a graph is strongly connected | Set 1 (Kosaraju using...

Check if a graph is strongly connected | Set 1 (Kosaraju using DFS)

Given a directed graph, find out whether the graph is strongly connected or not. A directed graph is strongly connected if there is a path between any two pair of vertices. For example, following is a strongly connected graph.
 

connectivity3

It is easy for undirected graph, we can just do a BFS and DFS starting from any vertex. If BFS or DFS visits all vertices, then the given undirected graph is connected. This approach won’t work for a directed graph. For example, consider the following graph which is not strongly connected. If we start DFS (or BFS) from vertex 0, we can reach all vertices, but if we start from any other vertex, we cannot reach all vertices.
 

connectivity1

How to do for directed graph?

A simple idea is to use a all pair shortest path algorithm like Floyd Warshall or find Transitive Closure of graph. Time complexity of this method would be O(v3).
We can also do DFS V times starting from every vertex. If any DFS, doesn’t visit all vertices, then graph is not strongly connected. This algorithm takes O(V*(V+E)) time which can be same as transitive closure for a dense graph.

A better idea can be Strongly Connected Components (SCC) algorithm. We can find all SCCs in O(V+E) time. If number of SCCs is one, then graph is strongly connected. The algorithm for SCC does extra work as it finds all SCCs. 

Following is Kosaraju’s DFS based simple algorithm that does two DFS traversals of graph: 

  1. Initialize all vertices as not visited.
  2. Do a DFS traversal of graph starting from any arbitrary vertex v. If DFS traversal doesn’t visit all vertices, then return false.
  3. Reverse all arcs (or find transpose or reverse of graph) 
  4. Mark all vertices as not-visited in reversed graph.
  5. Do a DFS traversal of reversed graph starting from same vertex v (Same as step 2). If DFS traversal doesn’t visit all vertices, then return false. Otherwise return true.

The idea is, if every node can be reached from a vertex v, and every node can reach v, then the graph is strongly connected. In step 2, we check if all vertices are reachable from v. In step 4, we check if all vertices can reach v (In reversed graph, if all vertices are reachable from v, then all vertices can reach v in original graph). 
Following is the implementation of above algorithm.
Implementation:

C++




// C++ program to check if a given directed
// graph is strongly connected or not
#include <iostream>
#include <list>
#include <stack>
using namespace std;
 
class Graph
{
    int V;    // No. of vertices
    list<int> *adj; // An array of adjacency lists
 
    // A recursive function to print DFS
    // starting from v
    void DFSUtil(int v, bool visited[]);
public:
    // Constructor and Destructor
    Graph(int V) { this->V = V;  adj = new list<int>[V];}
    ~Graph() { delete [] adj; }
 
    // Method to add an edge
    void addEdge(int v, int w);
 
    // The main function that returns true if the
    // graph is strongly connected, otherwise false
    bool isSC();
 
    // Function that returns reverse (or transpose)
    // of this graph
    Graph getTranspose();
};
 
// A recursive function to print DFS starting from v
void Graph::DFSUtil(int v, bool visited[])
{
    // Mark the current node as visited and print it
    visited[v] = true;
 
    // Recur for all the vertices adjacent to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            DFSUtil(*i, visited);
}
 
// Function that returns reverse (or transpose) of this graph
Graph Graph::getTranspose()
{
    Graph g(V);
    for (int v = 0; v < V; v++)
    {
        // Recur for all the vertices adjacent to this vertex
        list<int>::iterator i;
        for(i = adj[v].begin(); i != adj[v].end(); ++i)
        {
            g.adj[*i].push_back(v);
        }
    }
    return g;
}
 
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
}
 
// The main function that returns true if graph
// is strongly connected
bool Graph::isSC()
{
    // St1p 1: Mark all the vertices as not visited
    // (For first DFS)
    bool visited[V];
    for (int i = 0; i < V; i++)
        visited[i] = false;
 
    // Step 2: Do DFS traversal starting from first vertex.
    DFSUtil(0, visited);
 
     // If DFS traversal doesn’t visit all vertices,
     // then return false.
    for (int i = 0; i < V; i++)
        if (visited[i] == false)
             return false;
 
    // Step 3: Create a reversed graph
    Graph gr = getTranspose();
 
    // Step 4: Mark all the vertices as not visited
    // (For second DFS)
    for(int i = 0; i < V; i++)
        visited[i] = false;
 
    // Step 5: Do DFS for reversed graph starting from
    // first vertex. Starting Vertex must be same starting
    // point of first DFS
    gr.DFSUtil(0, visited);
 
    // If all vertices are not visited in second DFS, then
    // return false
    for (int i = 0; i < V; i++)
        if (visited[i] == false)
             return false;
 
    return true;
}
 
// Driver program to test above functions
int main()
{
    // Create graphs given in the above diagrams
    Graph g1(5);
    g1.addEdge(0, 1);
    g1.addEdge(1, 2);
    g1.addEdge(2, 3);
    g1.addEdge(3, 0);
    g1.addEdge(2, 4);
    g1.addEdge(4, 2);
    g1.isSC()? cout << "Yes\n" : cout << "No\n";
 
    Graph g2(4);
    g2.addEdge(0, 1);
    g2.addEdge(1, 2);
    g2.addEdge(2, 3);
    g2.isSC()? cout << "Yes\n" : cout << "No\n";
 
    return 0;
}


Java




// Java program to check if a given directed graph is strongly
// connected or not
import java.io.*;
import java.util.*;
import java.util.LinkedList;
 
// This class represents a directed graph using adjacency
// list representation
class Graph
{
    private int V;   // No. of vertices
    private LinkedList<Integer> adj[]; //Adjacency List
 
    //Constructor
    Graph(int v)
    {
        V = v;
        adj = new LinkedList[v];
        for (int i=0; i<v; ++i)
            adj[i] = new LinkedList();
    }
 
    //Function to add an edge into the graph
    void addEdge(int v,int w) {  adj[v].add(w); }
 
    // A recursive function to print DFS starting from v
    void DFSUtil(int v,Boolean visited[])
    {
        // Mark the current node as visited and print it
        visited[v] = true;
 
        int n;
 
        // Recur for all the vertices adjacent to this vertex
        Iterator<Integer> i = adj[v].iterator();
        while (i.hasNext())
        {
            n = i.next();
            if (!visited[n])
                DFSUtil(n,visited);
        }
    }
 
    // Function that returns transpose of this graph
    Graph getTranspose()
    {
        Graph g = new Graph(V);
        for (int v = 0; v < V; v++)
        {
            // Recur for all the vertices adjacent to this vertex
            Iterator<Integer> i = adj[v].listIterator();
            while (i.hasNext())
                g.adj[i.next()].add(v);
        }
        return g;
    }
 
    // The main function that returns true if graph is strongly
    // connected
    Boolean isSC()
    {
        // Step 1: Mark all the vertices as not visited
        // (For first DFS)
        Boolean visited[] = new Boolean[V];
        for (int i = 0; i < V; i++)
            visited[i] = false;
 
        // Step 2: Do DFS traversal starting from first vertex.
        DFSUtil(0, visited);
 
        // If DFS traversal doesn't visit all vertices, then
        // return false.
        for (int i = 0; i < V; i++)
            if (visited[i] == false)
                return false;
 
        // Step 3: Create a reversed graph
        Graph gr = getTranspose();
 
        // Step 4: Mark all the vertices as not visited (For
        // second DFS)
        for (int i = 0; i < V; i++)
            visited[i] = false;
 
        // Step 5: Do DFS for reversed graph starting from
        // first vertex. Starting Vertex must be same starting
        // point of first DFS
        gr.DFSUtil(0, visited);
 
        // If all vertices are not visited in second DFS, then
        // return false
        for (int i = 0; i < V; i++)
            if (visited[i] == false)
                return false;
 
        return true;
    }
 
    public static void main(String args[])
    {
        // Create graphs given in the above diagrams
        Graph g1 = new Graph(5);
        g1.addEdge(0, 1);
        g1.addEdge(1, 2);
        g1.addEdge(2, 3);
        g1.addEdge(3, 0);
        g1.addEdge(2, 4);
        g1.addEdge(4, 2);
        if (g1.isSC())
            System.out.println("Yes");
        else
            System.out.println("No");
 
        Graph g2 = new Graph(4);
        g2.addEdge(0, 1);
        g2.addEdge(1, 2);
        g2.addEdge(2, 3);
        if (g2.isSC())
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
// This code is contributed by Aakash Hasija


Python3




# Python program to check if a given directed graph is strongly
# connected or not
 
from collections import defaultdict
 
# This class represents a directed graph using adjacency list representation
 
 
class Graph:
 
    def __init__(self, vertices):
        self.V = vertices  # No. of vertices
        self.graph = defaultdict(list# default dictionary to store graph
 
    # function to add an edge to graph
    def addEdge(self, u, v):
        self.graph[u].append(v)
 
     # A function used by isSC() to perform DFS
    def DFSUtil(self, v, visited):
 
        # Mark the current node as visited
        visited[v] = True
 
        # Recur for all the vertices adjacent to this vertex
        for i in self.graph[v]:
            if visited[i] == False:
                self.DFSUtil(i, visited)
 
    # Function that returns reverse (or transpose) of this graph
 
    def getTranspose(self):
 
        g = Graph(self.V)
 
        # Recur for all the vertices adjacent to this vertex
        for i in self.graph:
            for j in self.graph[i]:
                g.addEdge(j, i)
 
        return g
 
    # The main function that returns true if graph is strongly connected
    def isSC(self):
 
         # Step 1: Mark all the vertices as not visited (For first DFS)
        visited =[False]*(self.V)
         
        # Step 2: Do DFS traversal starting from first vertex.
        self.DFSUtil(0,visited)
 
        # If DFS traversal doesnt visit all vertices, then return false
        if any(i == False for i in visited):
            return False
 
        # Step 3: Create a reversed graph
        gr = self.getTranspose()
         
        # Step 4: Mark all the vertices as not visited (For second DFS)
        visited =[False]*(self.V)
 
        # Step 5: Do DFS for reversed graph starting from first vertex.
        # Starting Vertex must be same starting point of first DFS
        gr.DFSUtil(0,visited)
 
        # If all vertices are not visited in second DFS, then
        # return false
        if any(i == False for i in visited):
            return False
 
        return True
 
# Create a graph given in the above diagram
g1 = Graph(5)
g1.addEdge(0, 1)
g1.addEdge(1, 2)
g1.addEdge(2, 3)
g1.addEdge(3, 0)
g1.addEdge(2, 4)
g1.addEdge(4, 2)
print ("Yes" if g1.isSC() else "No")
 
g2 = Graph(4)
g2.addEdge(0, 1)
g2.addEdge(1, 2)
g2.addEdge(2, 3)
print ("Yes" if g2.isSC() else "No")
 
# This code is contributed by Neelam Yadav


Javascript




<script>
// Javascript program to check if a given directed graph is strongly
// connected or not
 
// This class represents a directed graph using adjacency
// list representation
class Graph
{
    // Constructor
    constructor(v)
    {
        this.V = v;
        this.adj = new Array(v);
        for (let i = 0; i < v; ++i)
            this.adj[i] = [];
    }
     
    // Function to add an edge into the graph
    addEdge(v,w)
    {
        this.adj[v].push(w);
    }
     
    // A recursive function to print DFS starting from v
    DFSUtil(v,visited)
    {
        // Mark the current node as visited and print it
        visited[v] = true;
  
        let n;
  
        // Recur for all the vertices adjacent to this vertex
        
        for(let i of this.adj[v].values())
        {
            n = i;
            if (!visited[n])
                this.DFSUtil(n,visited);
        }
    }
     
    // Function that returns transpose of this graph
    getTranspose()
    {
        let g = new Graph(this.V);
        for (let v = 0; v < this.V; v++)
        {
             
            // Recur for all the vertices adjacent to this vertex
             
            for(let i of this.adj[v].values())
                g.adj[i].push(v);
        }
        return g;
    }
     
    // The main function that returns true if graph is strongly
    // connected
    isSC()
    {
     
        // Step 1: Mark all the vertices as not visited
        // (For first DFS)
        let visited = new Array(this.V);
        for (let i = 0; i < this.V; i++)
            visited[i] = false;
  
        // Step 2: Do DFS traversal starting from first vertex.
        this.DFSUtil(0, visited);
  
        // If DFS traversal doesn't visit all vertices, then
        // return false.
        for (let i = 0; i < this.V; i++)
            if (visited[i] == false)
                return false;
  
        // Step 3: Create a reversed graph
        let gr = this.getTranspose();
  
        // Step 4: Mark all the vertices as not visited (For
        // second DFS)
        for (let i = 0; i < this.V; i++)
            visited[i] = false;
  
        // Step 5: Do DFS for reversed graph starting from
        // first vertex. Starting Vertex must be same starting
        // point of first DFS
        gr.DFSUtil(0, visited);
  
        // If all vertices are not visited in second DFS, then
        // return false
        for (let i = 0; i < this.V; i++)
            if (visited[i] == false)
                return false;
  
        return true;
    }
}
 
// Create graphs given in the above diagrams
let g1 = new Graph(5);
g1.addEdge(0, 1);
g1.addEdge(1, 2);
g1.addEdge(2, 3);
g1.addEdge(3, 0);
g1.addEdge(2, 4);
g1.addEdge(4, 2);
if (g1.isSC())
    document.write("Yes<br>");
else
    document.write("No<br>");
 
let g2 = new Graph(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
if (g2.isSC())
    document.write("Yes");
else
    document.write("No");
 
 
// This code is contributed by avanitrachhadiya2155
</script>


C#




using System;
using System.Collections.Generic;
 
class Graph
{
    private int V;
    private List<int>[] adj;
 
    public Graph(int V)
    {
        this.V = V;
        adj = new List<int>[V];
        for (int i = 0; i < V; i++)
            adj[i] = new List<int>();
    }
 
    public void addEdge(int v, int w)
    {
        adj[v].Add(w);
    }
 
    // A recursive function to print DFS starting from v
    private void DFSUtil(int v, bool[] visited)
    {
        // Mark the current node as visited and print it
        visited[v] = true;
 
        // Recur for all the vertices adjacent to this vertex
        foreach (int i in adj[v])
        {
            if (!visited[i])
                DFSUtil(i, visited);
        }
    }
 
    // The main function that returns true if the
    // graph is strongly connected, otherwise false
    public bool isSC()
    {
        // Step 1: Mark all the vertices as not visited (For first DFS)
        bool[] visited = new bool[V];
        for (int i = 0; i < V; i++)
            visited[i] = false;
 
        // Step 2: Do DFS traversal starting from first vertex.
        DFSUtil(0, visited);
 
        // If DFS traversal doesn't visit all vertices, then return false
        for (int i = 0; i < V; i++)
            if (visited[i] == false)
                return false;
 
        // Step 3: Create a reversed graph
        Graph gr = getTranspose();
 
        // Step 4: Mark all the vertices as not visited (For second DFS)
        for (int i = 0; i < V; i++)
            visited[i] = false;
 
        // Step 5: Do DFS for reversed graph starting from first vertex.
        // Starting Vertex must be same starting point of first DFS
        gr.DFSUtil(0, visited);
 
        // If all vertices are not visited in second DFS, then return false
        for (int i = 0; i < V; i++)
            if (visited[i] == false)
                return false;
 
        return true;
    }
 
    // A function that returns transpose of this graph
    public Graph getTranspose()
    {
        Graph g = new Graph(V);
        for (int v = 0; v < V; v++)
            foreach (int i in adj[v])
                g.adj[i].Add(v);
 
        return g;
    }
 
    public static void Main()
    {
        Graph g1 = new Graph(5);
        g1.addEdge(0, 1);
        g1.addEdge(1, 2);
        g1.addEdge(2, 3);
        g1.addEdge(3, 0);
        g1.addEdge(2, 4);
        g1.addEdge(4, 2);
        if (g1.isSC())
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
 
        Graph g2 = new Graph(4);
        g2.addEdge(0, 1);
        g2.addEdge(1, 2);
        g2.addEdge(2, 3);
        if(g2.isSC())
          Console.WriteLine("Yes");
        else
          Console.WriteLine("No");
    }
}


Output

Yes
No

Time Complexity: Time complexity of above implementation is same as Depth First Search which is O(V+E) if the graph is represented using adjacency list representation.

Auxiliary Space: O(V)

Can we improve further? 
The above approach requires two traversals of graph. We can find whether a graph is strongly connected or not in one traversal using Tarjan’s Algorithm to find Strongly Connected Components.

Exercise: 
Can we use BFS instead of DFS in above algorithm? See this.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments