Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIBitwise operations on Subarrays of size K

Bitwise operations on Subarrays of size K

Given an array arr[] of positive integers and a number K, the task is to find the minimum and maximum values of Bitwise operation on elements of subarray of size K.

Examples:

Input: arr[]={2, 5, 3, 6, 11, 13}, k = 3 
Output: 
Maximum AND = 2 
Minimum AND = 0 
Maximum OR = 15 
Minimum OR = 7 
Explanation: 
Maximum AND is generated by subarray 3, 6 and 11, 3 & 6 & 11 = 2 
Minimum AND is generated by subarray 2, 3 and 5, 2 & 3 & 5 = 0 
Maximum OR is generated by subarray 2, 6 and 13, 2 | 6 | 13 = 15 
Minimum OR is generated by subarray 2, 3 and 5, 2 | 3 | 5 = 7

Input: arr[]={5, 9, 7, 19}, k = 2 
Output: 
Maximum AND = 3 
Minimum AND = 1 
Maximum OR = 23 
Minimum OR = 13

Naive Approach: The naive approach is to generate all possible subarrays of size K and check which of the above-formed subarray will give the minimum and maximum Bitwise OR and AND.
Time Complexity: O(N2) 
Auxiliary Space: O(K)

Efficient Approach: The idea is to use the Sliding Window Technique to solve this problem. Below are the steps:

  1. Traverse the prefix array of size K and for each array, element goes through it’s each bit and increases bit array (by maintaining an integer array bit of size 32) by 1 if it is set.
  2. Convert this bit array to a decimal number lets say ans, and move the sliding window to the next index.
  3. For newly added element for the next subarray of size K, Iterate through each bit of the newly added element and increase bit array by 1 if it is set.
  4. For removing the first element from the previous window, decrease bit array by 1 if it is set.
  5. Update ans with a minimum or maximum of the new decimal number generated by bit array.
  • Below is the program to find the Maximum Bitwise OR subarray:

C++




// C++ program for maximum values of
// each bitwise OR operation on
// element of subarray of size K
#include <iostream>
using namespace std;
  
// Function to convert bit array to
// decimal number
int build_num(int bit[])
{
    int ans = 0;
  
    for (int i = 0; i < 32; i++)
        if (bit[i])
            ans += (1 << i);
  
    return ans;
}
  
// Function to find  maximum values of
// each bitwise OR operation on
// element of subarray of size K
int maximumOR(int arr[], int n, int k)
{
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int bit[32] = { 0 };
  
    // Create a sliding window of size k
    for (int i = 0; i < k; i++) {
        for (int j = 0; j < 32; j++) {
            if (arr[i] & (1 << j))
                bit[j]++;
        }
    }
  
    // Function call
    int max_or = build_num(bit);
  
    for (int i = k; i < n; i++) {
  
        // Perform operation for
        // removed element
        for (int j = 0; j < 32; j++) {
            if (arr[i - k] & (1 << j))
                bit[j]--;
        }
  
        // Perform operation for
        // added_element
        for (int j = 0; j < 32; j++) {
            if (arr[i] & (1 << j))
                bit[j]++;
        }
  
        // Taking maximum value
        max_or = max(build_num(bit), max_or);
    }
  
    // Return the result
    return max_or;
}
  
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = sizeof arr / sizeof arr[0];
  
    // Function Call
    cout << maximumOR(arr, n, k);
  
    return 0;
}


Java




// Java program for maximum values of
// each bitwise OR operation on
// element of subarray of size K
import java.util.*;
class GFG{
  
// Function to convert bit array to
// decimal number
static int build_num(int bit[])
{
    int ans = 0;
  
    for (int i = 0; i < 32; i++)
        if (bit[i] > 0)
            ans += (1 << i);
  
    return ans;
}
  
// Function to find  maximum values of
// each bitwise OR operation on
// element of subarray of size K
static int maximumOR(int arr[], int n, int k)
{
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int bit[] = new int[32];
  
    // Create a sliding window of size k
    for (int i = 0; i < k; i++) 
    {
        for (int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
    }
  
    // Function call
    int max_or = build_num(bit);
  
    for (int i = k; i < n; i++) 
    {
  
        // Perform operation for
        // removed element
        for (int j = 0; j < 32; j++) 
        {
            if ((arr[i - k] & (1 << j)) > 0)
                bit[j]--;
        }
  
        // Perform operation for
        // added_element
        for (int j = 0; j < 32; j++) 
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
  
        // Taking maximum value
        max_or = Math.max(build_num(bit), max_or);
    }
  
    // Return the result
    return max_or;
}
  
// Driver Code
public static void main(String[] args)
{
    // Given array arr[]
    int arr[] = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = arr.length;
  
    // Function Call
    System.out.print(maximumOR(arr, n, k));
}
}
  
// This code is contributed by Rohit_ranjan


Python3




# Python3 program for maximum values of
# each bitwise OR operation on
# element of subarray of size K
  
# Function to convert bit array to
# decimal number
def build_num(bit):
      
    ans = 0;
  
    for i in range(32):
        if (bit[i] > 0):
            ans += (1 << i);
  
    return ans;
  
# Function to find maximum values of
# each bitwise OR operation on
# element of subarray of size K
def maximumOR(arr, n, k):
      
    # Maintain an integer array bit
    # of size 32 all initialized to 0
    bit = [0] * 32;
  
    # Create a sliding window of size k
    for i in range(k):
        for j in range(32):
            if ((arr[i] & (1 << j)) > 0):
                bit[j] += 1;
  
    # Function call
    max_or = build_num(bit);
  
    for i in range(k, n):
  
        # Perform operation for
        # removed element
        for j in range(32):
            if ((arr[i - k] & (1 << j)) > 0):
                bit[j] -= 1;
  
        # Perform operation for
        # added_element
        for j in range(32):
            if ((arr[i] & (1 << j)) > 0):
                bit[j] += 1;
  
        # Taking maximum value
        max_or = max(build_num(bit), max_or);
  
    # Return the result
    return max_or;
  
# Driver Code
if __name__ == '__main__':
      
    # Given array arr
    arr = [ 2, 5, 3, 6, 11, 13 ];
  
    # Given subarray size K
    k = 3;
    n = len(arr);
  
    # Function call
    print(maximumOR(arr, n, k));
      
# This code is contributed by Amit Katiyar


C#




// C# program for maximum values of
// each bitwise OR operation on
// element of subarray of size K
using System;
class GFG{
  
    // Function to convert bit 
    // array to decimal number
    static int build_num(int[] bit)
    {
        int ans = 0;
          for (int i = 0; i < 32; i++)
            if (bit[i] > 0)
                ans += (1 << i);
        return ans;
    }
  
    // Function to find  maximum values of
    // each bitwise OR operation on
    // element of subarray of size K
    static int maximumOR(int[] arr, int n, int k)
    {
        // Maintain an integer array bit[]
        // of size 32 all initialized to 0
        int[] bit = new int[32];
  
        // Create a sliding window of size k
        for (int i = 0; i < k; i++) 
        {
            for (int j = 0; j < 32; j++) 
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
        }
  
        // Function call
        int max_or = build_num(bit);
  
        for (int i = k; i < n; i++) 
        {
  
            // Perform operation for
            // removed element
            for (int j = 0; j < 32; j++) 
            {
                if ((arr[i - k] & (1 << j)) > 0)
                    bit[j]--;
            }
  
            // Perform operation for
            // added_element
            for (int j = 0; j < 32; j++) 
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
  
            // Taking maximum value
            max_or = Math.Max(build_num(bit), max_or);
        }
  
        // Return the result
        return max_or;
    }
  
    // Driver Code
    public static void Main(String[] args)
    {
        // Given array []arr
        int[] arr = {2, 5, 3, 6, 11, 13};
  
        // Given subarray size K
        int k = 3;
        int n = arr.Length;
  
        // Function Call
        Console.Write(maximumOR(arr, n, k));
    }
}
  
// This code is contributed by Rohit_ranjan


Javascript




<script>
    // Javascript program for maximum values of
    // each bitwise OR operation on
    // element of subarray of size K
      
    // Function to convert bit array to
    // decimal number
    function build_num(bit)
    {
        let ans = 0;
  
        for (let i = 0; i < 32; i++)
            if (bit[i] > 0)
                ans += (1 << i);
  
        return ans;
    }
  
       // Function to find  maximum values of
    // each bitwise OR operation on
    // element of subarray of size K
    function maximumOR(arr, n, k)
    {
        // Maintain an integer array bit[]
        // of size 32 all initialized to 0
        let bit = new Array(32);
        bit.fill(0);
   
        // Create a sliding window of size k
        for (let i = 0; i < k; i++)
        {
            for (let j = 0; j < 32; j++)
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
        }
   
        // Function call
        let max_or = build_num(bit);
   
        for (let i = k; i < n; i++)
        {
   
            // Perform operation for
            // removed element
            for (let j = 0; j < 32; j++)
            {
                if ((arr[i - k] & (1 << j)) > 0)
                    bit[j]--;
            }
   
            // Perform operation for
            // added_element
            for (let j = 0; j < 32; j++)
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
   
            // Taking maximum value
            max_or = Math.max(build_num(bit), max_or);
        }
   
        // Return the result
        return max_or;
    }
      
    // Given array []arr
    let arr = [2, 5, 3, 6, 11, 13];
  
    // Given subarray size K
    let k = 3;
    let n = arr.length;
  
    // Function Call
    document.write(maximumOR(arr, n, k));
      
    // This code is contributed by divyesh072019.
</script>


Output: 

15

Time Complexity: O(n * B) where n is the size of the array and B is the integer array bit of size 32. 
Auxiliary Space: O(n)
 

  • Below is the program to find the Minimum Bitwise OR subarray:

C++




// C++ program for minimum values of
// each bitwise OR operation on
// element of subarray of size K
#include <iostream>
using namespace std;
  
// Function to convert bit array
// to decimal number
int build_num(int bit[])
{
    int ans = 0;
  
    for (int i = 0; i < 32; i++)
        if (bit[i])
            ans += (1 << i);
  
    return ans;
}
  
// Function to find  minimum values of
// each bitwise OR operation on
// element of subarray of size K
int minimumOR(int arr[], int n, int k)
{
  
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int bit[32] = { 0 };
  
    // Create a sliding window of size k
    for (int i = 0; i < k; i++) {
        for (int j = 0; j < 32; j++) {
            if (arr[i] & (1 << j))
                bit[j]++;
        }
    }
  
    // Function call
    int min_or = build_num(bit);
  
    for (int i = k; i < n; i++) {
  
        // Perform operation for
        // removed element
        for (int j = 0; j < 32; j++) {
            if (arr[i - k] & (1 << j))
                bit[j]--;
        }
  
        // Perform operation for
        // added_element
        for (int j = 0; j < 32; j++) {
            if (arr[i] & (1 << j))
                bit[j]++;
        }
  
        // Taking minimum value
        min_or = min(build_num(bit),
                     min_or);
    }
  
    // Return the result
    return min_or;
}
  
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = sizeof arr / sizeof arr[0];
  
    // Function Call
    cout << minimumOR(arr, n, k);
  
    return 0;
}


Java




// Java program for minimum values of
// each bitwise OR operation on
// element of subarray of size K
import java.util.*;
  
class GFG{
  
// Function to convert bit array
// to decimal number
static int build_num(int bit[])
{
    int ans = 0;
  
    for(int i = 0; i < 32; i++)
        if (bit[i] > 0)
            ans += (1 << i);
  
    return ans;
}
  
// Function to find minimum values of
// each bitwise OR operation on
// element of subarray of size K
static int minimumOR(int arr[], int n, int k)
{
  
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int bit[] = new int[32];
  
    // Create a sliding window of size k
    for(int i = 0; i < k; i++) 
    {
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
    }
  
    // Function call
    int min_or = build_num(bit);
  
    for(int i = k; i < n; i++)
    {
          
        // Perform operation for
        // removed element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i - k] & (1 << j)) > 0)
                bit[j]--;
        }
  
        // Perform operation for
        // added_element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
  
        // Taking minimum value
        min_or = Math.min(build_num(bit),
                          min_or);
    }
  
    // Return the result
    return min_or;
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Given array arr[]
    int arr[] = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = arr.length;
  
    // Function call
    System.out.print(minimumOR(arr, n, k));
}
}
  
// This code is contributed by Amit Katiyar


Python3




# Python3 program for minimum values
# of each bitwise OR operation on
# element of subarray of size K
  
# Function to convert bit array
# to decimal number
def build_num(bit):
      
    ans = 0;
  
    for i in range(32):
        if (bit[i] > 0):
            ans += (1 << i);
  
    return ans;
  
# Function to find minimum values of
# each bitwise OR operation on
# element of subarray of size K
def minimumOR(arr, n, k):
      
    # Maintain an integer array bit
    # of size 32 all initialized to 0
    bit = [0] * 32;
  
    # Create a sliding window of size k
    for i in range(k):
        for j in range(32):
            if ((arr[i] & (1 << j)) > 0):
                bit[j] += 1;
  
    # Function call
    min_or = build_num(bit);
  
    for i in range(k, n):
  
        # Perform operation for
        # removed element
        for j in range(32):
            if ((arr[i - k] & (1 << j)) > 0):
                bit[j] -= 1;
  
        # Perform operation for
        # added_element
        for j in range(32):
            if ((arr[i] & (1 << j)) > 0):
                bit[j] += 1;
  
        # Taking minimum value
        min_or = min(build_num(bit), min_or);
  
    # Return the result
    return min_or;
  
# Driver Code
if __name__ == '__main__':
      
    # Given array arr
    arr = [ 2, 5, 3, 6, 11, 13 ];
  
    # Given subarray size K
    k = 3;
    n = len(arr);
  
    # Function call
    print(minimumOR(arr, n, k));
  
# This code is contributed by Amit Katiyar 


C#




// C# program for minimum values of
// each bitwise OR operation on
// element of subarray of size K
using System;
  
class GFG{
  
// Function to convert bit array
// to decimal number
static int build_num(int []bit)
{
    int ans = 0;
  
    for(int i = 0; i < 32; i++)
        if (bit[i] > 0)
            ans += (1 << i);
  
    return ans;
}
  
// Function to find minimum values of
// each bitwise OR operation on
// element of subarray of size K
static int minimumOR(int []arr, int n, int k)
{
  
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int []bit = new int[32];
  
    // Create a sliding window of size k
    for(int i = 0; i < k; i++) 
    {
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
    }
  
    // Function call
    int min_or = build_num(bit);
  
    for(int i = k; i < n; i++)
    {
          
        // Perform operation for
        // removed element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i - k] & (1 << j)) > 0)
                bit[j]--;
        }
  
        // Perform operation for
        // added_element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
  
        // Taking minimum value
        min_or = Math.Min(build_num(bit),
                          min_or);
    }
  
    // Return the result
    return min_or;
}
  
// Driver Code
public static void Main(String[] args)
{
      
    // Given array []arr
    int []arr = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = arr.Length;
  
    // Function call
    Console.Write(minimumOR(arr, n, k));
}
}
  
// This code is contributed by Amit Katiyar


Javascript




<script>
  
// Javascript program for minimum values of
// each bitwise OR operation on
// element of subarray of size K
  
// Function to convert bit array
// to decimal number
function build_num(bit)
{
    let ans = 0;
  
    for(let i = 0; i < 32; i++)
        if (bit[i] > 0)
            ans += (1 << i);
  
    return ans;
}
  
// Function to find  minimum values of
// each bitwise OR operation on
// element of subarray of size K
function minimumOR(arr, n, k)
{
      
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    let bit = new Array(32);
    bit.fill(0);
  
    // Create a sliding window of size k
    for(let i = 0; i < k; i++) 
    {
        for(let j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
    }
  
    // Function call
    let min_or = build_num(bit);
  
    for(let i = k; i < n; i++)
    {
          
        // Perform operation for
        // removed element
        for(let j = 0; j < 32; j++) 
        {
            if ((arr[i - k] & (1 << j)) > 0)
                bit[j]--;
        }
  
        // Perform operation for
        // added_element
        for(let j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
  
        // Taking minimum value
        min_or = Math.min(build_num(bit), min_or);
    }
  
    // Return the result
    return min_or;
}
  
// Driver code
  
// Given array arr[]
let arr = [ 2, 5, 3, 6, 11, 13 ];
  
// Given subarray size K
let k = 3;
let n = arr.length;
  
// Function Call
document.write(minimumOR(arr, n, k));
  
// This code is contributed by rameshtravel07   
  
</script>


Output: 

7

Time Complexity: O(n * B) where n is the size of the array and B is the integer array bit of size 32. 
Auxiliary Space: O(n)

  • Below is the program to find the Maximum Bitwise AND subarray:

C++




// C++ program for maximum values of
// each bitwise AND operation on
// element of subarray of size K
#include <iostream>
using namespace std;
  
// Function to convert bit array
// to decimal number
int build_num(int bit[], int k)
{
    int ans = 0;
  
    for (int i = 0; i < 32; i++)
  
        if (bit[i] == k)
            ans += (1 << i);
  
    return ans;
}
  
// Function to find maximum values of
// each bitwise AND operation on
// element of subarray of size K
int maximumAND(int arr[], int n, int k)
{
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int bit[32] = { 0 };
  
    // Create a sliding window of size k
    for (int i = 0; i < k; i++) {
        for (int j = 0; j < 32; j++) {
            if (arr[i] & (1 << j))
                bit[j]++;
        }
    }
  
    // Function call
    int max_and = build_num(bit, k);
  
    for (int i = k; i < n; i++) {
  
        // Perform operation for
        // removed element
        for (int j = 0; j < 32; j++) {
            if (arr[i - k] & (1 << j))
                bit[j]--;
        }
  
        // Perform operation for
        // added element
        for (int j = 0; j < 32; j++) {
            if (arr[i] & (1 << j))
                bit[j]++;
        }
  
        // Taking maximum value
        max_and = max(build_num(bit, k),
                      max_and);
    }
  
    // Return the result
    return max_and;
}
  
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = sizeof arr / sizeof arr[0];
  
    // Function Call
    cout << maximumAND(arr, n, k);
  
    return 0;
}


Java




// Java program for maximum values of
// each bitwise AND operation on
// element of subarray of size K
class GFG{
  
// Function to convert bit array
// to decimal number
static int build_num(int bit[], int k)
{
    int ans = 0;
  
    for(int i = 0; i < 32; i++)
        if (bit[i] == k)
            ans += (1 << i);
  
    return ans;
}
  
// Function to find maximum values of
// each bitwise AND operation on
// element of subarray of size K
static int maximumAND(int arr[], 
                      int n, int k)
{
      
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int bit[] = new int[32];
  
    // Create a sliding window of size k
    for(int i = 0; i < k; i++)
    {
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
    }
  
    // Function call
    int max_and = build_num(bit, k);
  
    for(int i = k; i < n; i++)
    {
          
        // Perform operation for
        // removed element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i - k] & (1 << j)) > 0)
                bit[j]--;
        }
  
        // Perform operation for
        // added element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
  
        // Taking maximum value
        max_and = Math.max(build_num(bit, k),
                           max_and);
    }
  
    // Return the result
    return max_and;
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Given array arr[]
    int arr[] = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = arr.length;
  
    // Function call
    System.out.print(maximumAND(arr, n, k));
}
}
  
// This code is contributed by 29AjayKumar


Python3




# Python3 program for maximum values of
# each bitwise AND operation on
# element of subarray of size K
  
# Function to convert bit array
# to decimal number
def build_num(bit, k):
      
    ans = 0;
  
    for i in range(32):
        if (bit[i] == k):
            ans += (1 << i);
  
    return ans;
  
# Function to find maximum values of
# each bitwise AND operation on
# element of subarray of size K
def maximumAND(arr, n, k):
      
    # Maintain an integer array bit
    # of size 32 all initialized to 0
    bit = [0] * 32;
  
    # Create a sliding window of size k
    for i in range(k):
        for j in range(32):
            if ((arr[i] & (1 << j)) > 0):
                bit[j] += 1;
  
    # Function call
    max_and = build_num(bit, k);
  
    for i in range(k, n):
  
        # Perform operation for
        # removed element
        for j in range(32):
            if ((arr[i - k] & (1 << j)) > 0):
                bit[j] -= 1;
  
        # Perform operation for
        # added element
        for j in range(32):
            if ((arr[i] & (1 << j)) > 0):
                bit[j] += 1;
  
        # Taking maximum value
        max_and = max(build_num(bit, k),
                      max_and);
  
    # Return the result
    return max_and;
  
# Driver Code
if __name__ == '__main__':
      
    # Given array arr
    arr = [ 2, 5, 3, 6, 11, 13 ];
  
    # Given subarray size K
    k = 3;
    n = len(arr);
  
    # Function call
    print(maximumAND(arr, n, k));
  
# This code is contributed by Amit Katiyar


C#




// C# program for maximum values of
// each bitwise AND operation on
// element of subarray of size K
using System;
class GFG{
  
    // Function to convert bit 
    // array to decimal number
    static int build_num(int[] bit, int k)
    {
        int ans = 0;
          for (int i = 0; i < 32; i++)
            if (bit[i] == k)
                ans += (1 << i);
        return ans;
    }
  
    // Function to find maximum values of
    // each bitwise AND operation on
    // element of subarray of size K
    static int maximumAND(int[] arr, int n, int k)
    {
  
        // Maintain an integer array bit[]
        // of size 32 all initialized to 0
        int[] bit = new int[32];
  
        // Create a sliding window of size k
        for (int i = 0; i < k; i++) 
        {
            for (int j = 0; j < 32; j++) 
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
        }
  
        // Function call
        int max_and = build_num(bit, k);
  
        for (int i = k; i < n; i++) 
        {
            
            // Perform operation for
            // removed element
            for (int j = 0; j < 32; j++) 
            {
                if ((arr[i - k] & (1 << j)) > 0)
                    bit[j]--;
            }
  
            // Perform operation for
            // added element
            for (int j = 0; j < 32; j++) 
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
  
            // Taking maximum value
            max_and = Math.Max(build_num(bit, k), 
                               max_and);
        }
  
        // Return the result
        return max_and;
    }
  
    // Driver Code
    public static void Main(String[] args)
    {
  
        // Given array []arr
        int[] arr = {2, 5, 3, 6, 11, 13};
  
        // Given subarray size K
        int k = 3;
        int n = arr.Length;
  
        // Function call
        Console.Write(maximumAND(arr, n, k));
    }
}
  
// This code is contributed by shikhasingrajput


Javascript




<script>
    // Javascript program for maximum values of
    // each bitwise AND operation on
    // element of subarray of size K
      
    // Function to convert bit
    // array to decimal number
    function build_num(bit, k)
    {
        let ans = 0;
        for (let i = 0; i < 32; i++)
          if (bit[i] == k)
            ans += (1 << i);
        return ans;
    }
   
    // Function to find maximum values of
    // each bitwise AND operation on
    // element of subarray of size K
    function maximumAND(arr, n, k)
    {
   
        // Maintain an integer array bit[]
        // of size 32 all initialized to 0
        let bit = new Array(32);
        bit.fill(0);
   
        // Create a sliding window of size k
        for (let i = 0; i < k; i++)
        {
            for (let j = 0; j < 32; j++)
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
        }
   
        // Function call
        let max_and = build_num(bit, k);
   
        for (let i = k; i < n; i++)
        {
             
            // Perform operation for
            // removed element
            for (let j = 0; j < 32; j++)
            {
                if ((arr[i - k] & (1 << j)) > 0)
                    bit[j]--;
            }
   
            // Perform operation for
            // added element
            for (let j = 0; j < 32; j++)
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
   
            // Taking maximum value
            max_and = Math.max(build_num(bit, k),
                               max_and);
        }
   
        // Return the result
        return max_and;
    }
      
    // Given array []arr
    let arr = [2, 5, 3, 6, 11, 13];
  
    // Given subarray size K
    let k = 3;
    let n = arr.length;
  
    // Function call
    document.write(maximumAND(arr, n, k));
  
// This code is contributed by mukesh07.
</script>


Output: 

2

Time Complexity: O(n * B) where n is the size of the array and B is the integer array bit of size 32. 
Auxiliary Space: O(n)
 

C++




// C++ program for minimum values of
// each bitwise AND operation on
// elements of subarray of size K
#include <iostream>
using namespace std;
  
// Function to convert bit array
// to decimal number
int build_num(int bit[], int k)
{
    int ans = 0;
  
    for (int i = 0; i < 32; i++)
        if (bit[i] == k)
            ans += (1 << i);
  
    return ans;
}
  
// Function to find minimum values of
// each bitwise AND operation on
// element of subarray of size K
int minimumAND(int arr[], int n, int k)
{
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int bit[32] = { 0 };
  
    // Create a sliding window of size k
    for (int i = 0; i < k; i++) {
        for (int j = 0; j < 32; j++) {
            if (arr[i] & (1 << j))
                bit[j]++;
        }
    }
  
    // Function call
    int min_and = build_num(bit, k);
  
    for (int i = k; i < n; i++) {
  
        // Perform operation to removed
        // element
        for (int j = 0; j < 32; j++) {
            if (arr[i - k] & (1 << j))
                bit[j]--;
        }
  
        // Perform operation to add
        // element
        for (int j = 0; j < 32; j++) {
            if (arr[i] & (1 << j))
                bit[j]++;
        }
  
        // Taking minimum value
        min_and = min(build_num(bit, k),
                      min_and);
    }
  
    // Return the result
    return min_and;
}
  
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = sizeof arr / sizeof arr[0];
  
    // Function Call
    cout << minimumAND(arr, n, k);
  
    return 0;
}


Java




// Java program for minimum values of
// each bitwise AND operation on
// elements of subarray of size K
class GFG{
  
// Function to convert bit array
// to decimal number
static int build_num(int bit[], int k)
{
    int ans = 0;
  
    for(int i = 0; i < 32; i++)
        if (bit[i] == k)
            ans += (1 << i);
  
    return ans;
}
  
// Function to find minimum values of
// each bitwise AND operation on
// element of subarray of size K
static int minimumAND(int arr[], int n, int k)
{
      
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int bit[] = new int[32];
  
    // Create a sliding window of size k
    for(int i = 0; i < k; i++)
    {
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
    }
  
    // Function call
    int min_and = build_num(bit, k);
  
    for(int i = k; i < n; i++)
    {
          
        // Perform operation to removed
        // element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i - k] & (1 << j)) > 0)
                bit[j]--;
        }
  
        // Perform operation to add
        // element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
  
        // Taking minimum value
        min_and = Math.min(build_num(bit, k),
                           min_and);
    }
  
    // Return the result
    return min_and;
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Given array arr[]
    int arr[] = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = arr.length;
  
    // Function call
    System.out.print(minimumAND(arr, n, k));
}
}
  
// This code is contributed by 29AjayKumar 


Python3




# Python program for minimum values of
# each bitwise AND operation on
# elements of subarray of size K
  
  
# Function to convert bit array
# to decimal number
def build_num(bit, k):
    ans = 0;
  
    for i in range(32):
        if (bit[i] == k):
            ans += (1 << i);
  
    return ans;
  
  
# Function to find minimum values of
# each bitwise AND operation on
# element of subarray of size K
def minimumAND(arr, n, k):
    # Maintain an integer array bit
    # of size 32 all initialized to 0
    bit = [0] * 32;
  
    # Create a sliding window of size k
    for i in range(k):
        for j in range(32):
            if ((arr[i] & (1 << j)) > 0):
                bit[j] += 1;
  
    # Function call
    min_and = build_num(bit, k);
  
    for i in range(k, n):
  
        # Perform operation to removed
        # element
        for j in range(32):
            if ((arr[i - k] & (1 << j)) > 0):
                bit[j] -=1;
  
        # Perform operation to add
        # element
        for j in range(32):
            if ((arr[i] & (1 << j)) > 0):
                bit[j] += 1;
  
        # Taking minimum value
        min_and = min(build_num(bit, k), min_and);
  
    # Return the result
    return min_and;
  
  
# Driver Code
if __name__ == '__main__':
    # Given array arr
    arr = [2, 5, 3, 6, 11, 13];
  
    # Given subarray size K
    k = 3;
    n = len(arr);
  
    # Function call
    print(minimumAND(arr, n, k));
  
    # This code contributed by Rajput-Ji 


C#




// C# program for minimum values of
// each bitwise AND operation on
// elements of subarray of size K
using System;
  
class GFG{
  
// Function to convert bit array
// to decimal number
static int build_num(int []bit, int k)
{     
    int ans = 0;
  
    for(int i = 0; i < 32; i++)
        if (bit[i] == k)
            ans += (1 << i);
  
    return ans;
}
  
// Function to find minimum values of
// each bitwise AND operation on
// element of subarray of size K
static int minimumAND(int []arr, int n, int k)
{
      
    // Maintain an integer array bit[]
    // of size 32 all initialized to 0
    int []bit = new int[32];
  
    // Create a sliding window of size k
    for(int i = 0; i < k; i++)
    {
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
    }
  
    // Function call
    int min_and = build_num(bit, k);
  
    for(int i = k; i < n; i++)
    {
          
        // Perform operation to removed
        // element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i - k] & (1 << j)) > 0)
                bit[j]--;
        }
  
        // Perform operation to add
        // element
        for(int j = 0; j < 32; j++)
        {
            if ((arr[i] & (1 << j)) > 0)
                bit[j]++;
        }
  
        // Taking minimum value
        min_and = Math.Min(build_num(bit, k),
                           min_and);
    }
  
    // Return the result
    return min_and;
}
  
// Driver Code
public static void Main(String[] args)
{
      
    // Given array []arr
    int []arr = { 2, 5, 3, 6, 11, 13 };
  
    // Given subarray size K
    int k = 3;
    int n = arr.Length;
  
    // Function call
    Console.Write(minimumAND(arr, n, k));
}
}
  
// This code is contributed by 29AjayKumar 


Javascript




<script>
  
    // Javascript program for minimum values of
    // each bitwise AND operation on
    // elements of subarray of size K
      
    // Function to convert bit array
    // to decimal number
    function build_num(bit, k)
    {    
        let ans = 0;
  
        for(let i = 0; i < 32; i++)
            if (bit[i] == k)
                ans += (1 << i);
  
        return ans;
    }
  
    // Function to find minimum values of
    // each bitwise AND operation on
    // element of subarray of size K
    function minimumAND(arr, n, k)
    {
  
        // Maintain an integer array bit[]
        // of size 32 all initialized to 0
        let bit = new Array(32);
        bit.fill(0);
  
        // Create a sliding window of size k
        for(let i = 0; i < k; i++)
        {
            for(let j = 0; j < 32; j++)
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
        }
  
        // Function call
        let min_and = build_num(bit, k);
  
        for(let i = k; i < n; i++)
        {
  
            // Perform operation to removed
            // element
            for(let j = 0; j < 32; j++)
            {
                if ((arr[i - k] & (1 << j)) > 0)
                    bit[j]--;
            }
  
            // Perform operation to add
            // element
            for(let j = 0; j < 32; j++)
            {
                if ((arr[i] & (1 << j)) > 0)
                    bit[j]++;
            }
  
            // Taking minimum value
            min_and = Math.min(build_num(bit, k), min_and);
        }
  
        // Return the result
        return min_and;
    }
      
    // Given array []arr
    let arr = [ 2, 5, 3, 6, 11, 13 ];
   
    // Given subarray size K
    let k = 3;
    let n = arr.length;
   
    // Function call
    document.write(minimumAND(arr, n, k));
      
</script>


Output: 

0

Time Complexity: O(n * B) where n is the size of the array and B is the integer array bit of size 32. 
Auxiliary Space: O(n)
 

C++




// C++ program to find the subarray
/// with minimum XOR
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the minimum XOR
// of the subarray of size K
void findMinXORSubarray(int arr[],
                        int n, int k)
{
    // K must be smaller than
    // or equal to n
    if (n < k)
        return;
  
    // Initialize the beginning
    // index of result
    int res_index = 0;
  
    // Compute XOR sum of first
    // subarray of size K
    int curr_xor = 0;
    for (int i = 0; i < k; i++)
        curr_xor ^= arr[i];
  
    // Initialize minimum XOR
    // sum as current xor
    int min_xor = curr_xor;
  
    // Traverse from (k+1)'th
    // element to n'th element
    for (int i = k; i < n; i++) {
  
        // XOR with current item
        // and first item of
        // previous subarray
        curr_xor ^= (arr[i] ^ arr[i - k]);
  
        // Update result if needed
        if (curr_xor < min_xor) {
            min_xor = curr_xor;
            res_index = (i - k + 1);
        }
    }
  
    // Print the minimum XOR
    cout << min_xor << "\n";
}
  
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 3, 7, 90, 20, 10, 50, 40 };
  
    // Given subarray size K
    int k = 3;
    int n = sizeof(arr) / sizeof(arr[0]);
  
    // Function Call
    findMinXORSubarray(arr, n, k);
    return 0;
}


Java




// Java program to find the subarray
// with minimum XOR
class GFG{
  
// Function to find the minimum XOR
// of the subarray of size K
static void findMinXORSubarray(int arr[],
                               int n, int k)
{
      
    // K must be smaller than
    // or equal to n
    if (n < k)
        return;
  
    // Initialize the beginning
    // index of result
    int res_index = 0;
  
    // Compute XOR sum of first
    // subarray of size K
    int curr_xor = 0;
    for(int i = 0; i < k; i++)
        curr_xor ^= arr[i];
  
    // Initialize minimum XOR
    // sum as current xor
    int min_xor = curr_xor;
  
    // Traverse from (k+1)'th
    // element to n'th element
    for(int i = k; i < n; i++)
    {
  
        // XOR with current item
        // and first item of
        // previous subarray
        curr_xor ^= (arr[i] ^ arr[i - k]);
  
        // Update result if needed
        if (curr_xor < min_xor)
        {
            min_xor = curr_xor;
            res_index = (i - k + 1);
        }
    }
  
    // Print the minimum XOR
    System.out.println(min_xor);
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Given array arr[]
    int arr[] = { 3, 7, 90, 20, 10, 50, 40 };
  
    // Given subarray size K
    int k = 3;
    int n = arr.length;
  
    // Function call
    findMinXORSubarray(arr, n, k);
}
}
  
// This code is contributed by rock_cool


Python3




# Python3 program to find the subarray
# with minimum XOR
  
# Function to find the minimum XOR
# of the subarray of size K
def findMinXORSubarray(arr, n, k):
      
    # K must be smaller than
    # or equal to n
    if (n < k):
        return;
  
    # Initialize the beginning
    # index of result
    res_index = 0;
  
    # Compute XOR sum of first
    # subarray of size K
    curr_xor = 0;
    for i in range(k):
        curr_xor ^= arr[i];
  
    # Initialize minimum XOR
    # sum as current xor
    min_xor = curr_xor;
  
    # Traverse from (k+1)'th
    # element to n'th element
    for i in range(k, n):
  
        # XOR with current item
        # and first item of
        # previous subarray
        curr_xor ^= (arr[i] ^ arr[i - k]);
  
        # Update result if needed
        if (curr_xor < min_xor):
            min_xor = curr_xor;
            res_index = (i - k + 1);
  
    # Print the minimum XOR
    print(min_xor);
  
# Driver Code
if __name__ == '__main__':
      
    # Given array arr
    arr = [ 3, 7, 90, 20, 10, 50, 40 ];
  
    # Given subarray size K
    k = 3;
    n = len(arr);
  
    # Function call
    findMinXORSubarray(arr, n, k);
  
# This code is contributed by Amit Katiyar 


C#




// C# program to find the subarray
// with minimum XOR
using System;
class GFG{
  
// Function to find the minimum XOR
// of the subarray of size K
static void findMinXORSubarray(int []arr,
                               int n, int k)
{
      
    // K must be smaller than
    // or equal to n
    if (n < k)
        return;
  
    // Initialize the beginning
    // index of result
    int res_index = 0;
  
    // Compute XOR sum of first
    // subarray of size K
    int curr_xor = 0;
    for(int i = 0; i < k; i++)
        curr_xor ^= arr[i];
  
    // Initialize minimum XOR
    // sum as current xor
    int min_xor = curr_xor;
  
    // Traverse from (k+1)'th
    // element to n'th element
    for(int i = k; i < n; i++)
    {
  
        // XOR with current item
        // and first item of
        // previous subarray
        curr_xor ^= (arr[i] ^ arr[i - k]);
  
        // Update result if needed
        if (curr_xor < min_xor)
        {
            min_xor = curr_xor;
            res_index = (i - k + 1);
        }
    }
  
    // Print the minimum XOR
    Console.WriteLine(min_xor);
}
  
// Driver Code
public static void Main(String[] args)
{
      
    // Given array []arr
    int []arr = { 3, 7, 90, 20, 10, 50, 40 };
  
    // Given subarray size K
    int k = 3;
    int n = arr.Length;
  
    // Function call
    findMinXORSubarray(arr, n, k);
}
}
  
// This code is contributed by PrinciRaj1992


Javascript




<script>
  
// Javascript program to find the subarray
// with minimum XOR
  
// Function to find the minimum XOR
// of the subarray of size K
function findMinXORSubarray(arr, n, k)
{
      
    // K must be smaller than
    // or equal to n
    if (n < k)
        return;
  
    // Initialize the beginning
    // index of result
    let res_index = 0;
  
    // Compute XOR sum of first
    // subarray of size K
    let curr_xor = 0;
    for(let i = 0; i < k; i++)
        curr_xor ^= arr[i];
  
    // Initialize minimum XOR
    // sum as current xor
    let min_xor = curr_xor;
  
    // Traverse from (k+1)'th
    // element to n'th element
    for(let i = k; i < n; i++) 
    {
          
        // XOR with current item
        // and first item of
        // previous subarray
        curr_xor ^= (arr[i] ^ arr[i - k]);
  
        // Update result if needed
        if (curr_xor < min_xor)
        {
            min_xor = curr_xor;
            res_index = (i - k + 1);
        }
    }
  
    // Print the minimum XOR
    document.write(min_xor);
}
  
// Driver code
  
// Given array arr[]
let arr = [ 3, 7, 90, 20, 10, 50, 40 ];
  
// Given subarray size K
let k = 3;
let n = arr.length;
  
// Function Call
findMinXORSubarray(arr, n, k);
      
// This code is contributed by divyeshrabadiya07
  
</script>


Output: 

16

Time Complexity: O(n * B) where n is the size of the array and B is the integer array bit of size 32. 
Auxiliary Space: O(n) 
 

Related Topic: Subarrays, Subsequences, and Subsets in Array

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments