Given a singly linked list and a key, the task is to find the key in the Linked List using Binary Search.
Examples:
Input: LinkedList = 1->4->7->8->9->10, key = 7
Output: Present
Input: LinkedList = 1->4->7->8->9->10, key = 12
Output: Value Not Present
Approach: To solve the problem using Binary search follow the below idea:
To perform a Binary search on a Linked List, the most important idea is to find the middle element of the Linked List on every iteration, which takes O(N) time everytime. This can be avoided if skip list is used.
- Find the middle element of the Linked List
- Compare the middle element with the key.
- If the key is found at the middle element, the process is terminated.
- If the key is not found at middle element, choose which half will be used as the next search space.
- If the key is smaller than the middle node, then the left side is used for the next search.
- If the key is larger than the middle node, then the right side is used for the next search.
- This process is continued until the key is found or the total Linked List is exhausted.
Below is the implementation of the above approach:
C++
// CPP code to implement binary search // on Singly Linked List #include <stdio.h> #include <stdlib.h> struct Node { int data; struct Node* next; }; Node* newNode(int x) { struct Node* temp = new Node; temp->data = x; temp->next = NULL; return temp; } // function to find out middle element struct Node* middle(Node* start, Node* last) { if (start == NULL) return NULL; struct Node* slow = start; struct Node* fast = start->next; while (fast != last) { fast = fast->next; if (fast != last) { slow = slow->next; fast = fast->next; } } return slow; } // Function for implementing the Binary // Search on linked list struct Node* binarySearch(Node* head, int value) { struct Node* start = head; struct Node* last = NULL; do { // Find middle Node* mid = middle(start, last); // If middle is empty if (mid == NULL) return NULL; // If value is present at middle if (mid->data == value) return mid; // If value is more than mid else if (mid->data < value) start = mid->next; // If the value is less than mid. else last = mid; } while (last == NULL || last != start); // value not present return NULL; } // Driver Code int main() { Node* head = newNode(1); head->next = newNode(4); head->next->next = newNode(7); head->next->next->next = newNode(8); head->next->next->next->next = newNode(9); head->next->next->next->next->next = newNode(10); int value = 7; if (binarySearch(head, value) == NULL) printf("Value not present\n"); else printf("Present"); return 0; }
Java
// Java code to implement binary search // on Singly Linked List // Node Class class Node { int data; Node next; // Constructor to create a new node Node(int d) { data = d; next = null; } } class BinarySearch { // function to insert a node at the beginning // of the Singly Linked List static Node push(Node head, int data) { Node newNode = new Node(data); newNode.next = head; head = newNode; return head; } // Function to find middle element // using Fast and Slow pointers static Node middleNode(Node start, Node last) { if (start == null) return null; Node slow = start; Node fast = start.next; while (fast != last) { fast = fast.next; if (fast != last) { slow = slow.next; fast = fast.next; } } return slow; } // function to insert a node at the beginning // of the Singly Linked List static Node binarySearch(Node head, int value) { Node start = head; Node last = null; do { // Find Middle Node mid = middleNode(start, last); // If middle is empty if (mid == null) return null; // If value is present at middle if (mid.data == value) return mid; // If value is less than mid else if (mid.data > value) { last = mid; } // If the value is more than mid. else start = mid.next; } while (last == null || last != start); // value not present return null; } // Driver Code public static void main(String[] args) { Node head = null; // Using push() function to // convert singly linked list // 10 -> 9 -> 8 -> 7 -> 4 -> 1 head = push(head, 1); head = push(head, 4); head = push(head, 7); head = push(head, 8); head = push(head, 9); head = push(head, 10); int value = 7; if (binarySearch(head, value) == null) { System.out.println("Value not present"); } else { System.out.println("Present"); } } } // This code is contributed by Vivekkumar Singh
Python
# Python code to implement binary search # on Singly Linked List # Link list node class Node: def __init__(self, data): self.data = data self.next = None self.prev = None def newNode(x): temp = Node(0) temp.data = x temp.next = None return temp # function to find out middle element def middle(start, last): if (start == None): return None slow = start fast = start . next while (fast != last): fast = fast . next if (fast != last): slow = slow . next fast = fast . next return slow # Function for implementing the Binary # Search on linked list def binarySearch(head,value): start = head last = None while True : # Find middle mid = middle(start, last) # If middle is empty if (mid == None): return None # If value is present at middle if (mid . data == value): return mid # If value is more than mid elif (mid . data < value): start = mid . next # If the value is less than mid. else: last = mid if not (last == None or last != start): break # value not present return None # Driver Code head = newNode(1) head.next = newNode(4) head.next.next = newNode(7) head.next.next.next = newNode(8) head.next.next.next.next = newNode(9) head.next.next.next.next.next = newNode(10) value = 7 if (binarySearch(head, value) == None): print("Value not present\n") else: print("Present") # This code is contributed by Arnab Kundu
C#
// C# code to implement binary search // on Singly Linked List using System; // Node Class public class Node { public int data; public Node next; // Constructor to create a new node public Node(int d) { data = d; next = null; } } class BinarySearch { // function to insert a node at the beginning // of the Singly Linked List static Node push(Node head, int data) { Node newNode = new Node(data); newNode.next = head; head = newNode; return head; } // Function to find middle element // using Fast and Slow pointers static Node middleNode(Node start, Node last) { if (start == null) return null; Node slow = start; Node fast = start.next; while (fast != last) { fast = fast.next; if (fast != last) { slow = slow.next; fast = fast.next; } } return slow; } // function to insert a node at the beginning // of the Singly Linked List static Node binarySearch(Node head, int value) { Node start = head; Node last = null; do { // Find Middle Node mid = middleNode(start, last); // If middle is empty if (mid == null) return null; // If value is present at middle if (mid.data == value) return mid; // If value is less than mid else if (mid.data > value) { start = mid.next; } // If the value is more than mid. else last = mid; } while (last == null || last != start); // value not present return null; } // Driver Code public static void Main(String []args) { Node head = null; // Using push() function to // convert singly linked list // 10 -> 9 -> 8 -> 7 -> 4 -> 1 head = push(head, 1); head = push(head, 4); head = push(head, 7); head = push(head, 8); head = push(head, 9); head = push(head, 10); int value = 7; if (binarySearch(head, value) == null) { Console.WriteLine("Value not present"); } else { Console.WriteLine("Present"); } } } // This code is contributed by Arnab Kundu
Javascript
<script> // JavaScript code to implement binary search // on Singly Linked List // Node Class class Node { constructor(data) { this.data = data; this.next = null; } } // function to insert a node at the beginning // of the Singly Linked List function push(head, data) { var newNode = new Node(data); newNode.next = head; head = newNode; return head; } // Function to find middle element // using Fast and Slow pointers function middleNode(start, last) { if (start == null) return null; var slow = start; var fast = start.next; while (fast != last) { fast = fast.next; if (fast != last) { slow = slow.next; fast = fast.next; } } return slow; } // function to insert a node at the beginning // of the Singly Linked List function binarySearch(head, value) { var start = head; var last = null; do { // Find Middle var mid = middleNode(start, last); // If middle is empty if (mid == null) return null; // If value is present at middle if (mid.data == value) return mid; // If value is less than mid else if (mid.data > value) { start = mid.next; } // If the value is more than mid. else last = mid; } while (last == null || last != start); // value not present return null; } // Driver Code var head = null; // Using push() function to // convert singly linked list // 10 -> 9 -> 8 -> 7 -> 4 -> 1 head = push(head, 1); head = push(head, 4); head = push(head, 7); head = push(head, 8); head = push(head, 9); head = push(head, 10); var value = 7; if (binarySearch(head, value) == null) { document.write("Value not present"); } else { document.write("Present"); } </script>
Present
Complexity Analysis:
- Time Complexity: O(N)
- Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!