Given that there are N books and M students. Also given are the number of pages in each book in ascending order. The task is to assign books in such a way that the maximum number of pages assigned to a student is minimum, with the condition that every student is assigned to read some consecutive books. Print that minimum number of pages.
Example :
Input: N = 4, pages[] = {12, 34, 67, 90}, M = 2
Output: 113
Explanation: There are 2 number of students. Books can be distributed in following combinations:
- [12] and [34, 67, 90] -> Max number of pages is allocated to student ‘2’ with 34 + 67 + 90 = 191 pages
- [12, 34] and [67, 90] -> Max number of pages is allocated to student ‘2’ with 67 + 90 = 157 pages
- [12, 34, 67] and [90] -> Max number of pages is allocated to student ‘1’ with 12 + 34 + 67 = 113 pages
Of the 3 cases, Option 3 has the minimum pages = 113.
Naive Approach: The simplest approach to solve this problem is to find all permutations to distribute N books among M students, and return the minimum page allocation among them.
Efficient Approach:
Another way to solve this problem is to use Binary Search, based on this idea:
Case 1: When no valid answer exists.
- If the number of students is greater than the number of books (i.e, M > N), In this case at least 1 student will be left to which no book has been assigned.
Case 2: When a valid answer exists.
- The maximum possible answer could be when there is only one student. So, all the book will be assigned to him and the result would be the sum of pages of all the books.
- The minimum possible answer could be when number of student is equal to the number of book (i.e, M == N) , In this case all the students will get at most one book. So, the result would be the maximum number of pages among them (i.e, maximum(pages[])).
- Hence, we can apply binary search in this given range and each time we can consider the mid value as the maximum limit of pages one can get. And check for the limit if answer is valid then update the limit accordingly.
Below is the approach to solve this problem using Binary Search:
- Calculate the mid and check if mid number of pages can be assigned to students such that all students will get at least one book.
- If yes, then update the result and check for the previous search space (end = mid-1)
- Otherwise, check for the next search space (start = mid+1)
Below is the implementation of the above approach:
C++
// C++ program for optimal allocation of pages #include <bits/stdc++.h> using namespace std; // Utility function to check if current minimum value // is feasible or not. bool isPossible( int arr[], int n, int m, int curr_min) { int studentsRequired = 1; int curr_sum = 0; // iterate over all books for ( int i = 0; i < n; i++) { // check if current number of pages are greater // than curr_min that means we will get the result // after mid no. of pages if (arr[i] > curr_min) return false ; // count how many students are required // to distribute curr_min pages if (curr_sum + arr[i] > curr_min) { // increment student count studentsRequired++; // update curr_sum curr_sum = arr[i]; // if students required becomes greater // than given no. of students,return false if (studentsRequired > m) return false ; } // else update curr_sum else curr_sum += arr[i]; } return true ; } // function to find minimum pages int findPages( int arr[], int n, int m) { long long sum = 0; // return -1 if no. of books is less than // no. of students if (n < m) return -1; int mx = INT_MIN; // Count total number of pages for ( int i = 0; i < n; i++) { sum += arr[i]; mx = max(mx, arr[i]); } // initialize start as 0 pages and end as // total pages int start = mx, end = sum; int result = INT_MAX; // traverse until start <= end while (start <= end) { // check if it is possible to distribute // books by using mid as current minimum int mid = (start + end) / 2; if (isPossible(arr, n, m, mid)) { // update result to current distribution // as it's the best we have found till now. result = mid; // as we are finding minimum and books // are sorted so reduce end = mid -1 // that means end = mid - 1; } else // if not possible means pages should be // increased so update start = mid + 1 start = mid + 1; } // at-last return minimum no. of pages return result; } // Drivers code int main() { // Number of pages in books int arr[] = { 12, 34, 67, 90 }; int n = sizeof arr / sizeof arr[0]; int m = 2; // No. of students cout << "Minimum number of pages = " << findPages(arr, n, m) << endl; return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// C program for optimal allocation of pages #include <limits.h> #include <stdbool.h> #include <stdio.h> // Utility function to check if current minimum value // is feasible or not. bool isPossible( int arr[], int n, int m, int curr_min) { int studentsRequired = 1; int curr_sum = 0; // iterate over all books for ( int i = 0; i < n; i++) { // check if current number of pages are greater // than curr_min that means we will get the result // after mid no. of pages if (arr[i] > curr_min) return false ; // count how many students are required // to distribute curr_min pages if (curr_sum + arr[i] > curr_min) { // increment student count studentsRequired++; // update curr_sum curr_sum = arr[i]; // if students required becomes greater // than given no. of students,return false if (studentsRequired > m) return false ; } // else update curr_sum else curr_sum += arr[i]; } return true ; } // function to find minimum pages int findPages( int arr[], int n, int m) { long long sum = 0; // return -1 if no. of books is less than // no. of students if (n < m) return -1; int mx = arr[0]; // Count total number of pages for ( int i = 0; i < n; i++) { sum += arr[i]; mx = (arr[i] > mx ? arr[i] : mx); } // initialize start as 0 pages and end as // total pages int start = mx, end = sum; int result = INT_MAX; // traverse until start <= end while (start <= end) { // check if it is possible to distribute // books by using mid as current minimum int mid = (start + end) / 2; if (isPossible(arr, n, m, mid)) { // update result to current distribution // as it's the best we have found till now. result = mid; // as we are finding minimum and books // are sorted so reduce end = mid -1 // that means end = mid - 1; } else // if not possible means pages should be // increased so update start = mid + 1 start = mid + 1; } // at-last return minimum no. of pages return result; } // Drivers code int main() { // Number of pages in books int arr[] = { 12, 34, 67, 90 }; int n = sizeof arr / sizeof arr[0]; int m = 2; // No. of students printf ( "Minimum number of pages = %d\n" , findPages(arr, n, m)); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// Java program for optimal allocation of pages public class GFG { // Utility method to check if current minimum value // is feasible or not. static boolean isPossible( int arr[], int n, int m, int curr_min) { int studentsRequired = 1 ; int curr_sum = 0 ; // iterate over all books for ( int i = 0 ; i < n; i++) { curr_sum += arr[i]; if (curr_sum > curr_min) { studentsRequired++; // increment student // count curr_sum = arr[i]; // update curr_sum } } return studentsRequired <= m; } // method to find minimum pages static int findPages( int arr[], int n, int m) { int sum = 0 ; // return -1 if no. of books is less than // no. of students if (n < m) return - 1 ; int mx = arr[ 0 ]; // Count total number of pages for ( int i = 0 ; i < n; i++) { sum += arr[i]; mx = (arr[i] > mx ? arr[i] : mx); } // initialize start as arr[n-1] pages(minimum answer // possible) and end as total pages(maximum answer // possible) int start = arr[n - 1 ], end = sum; int result = Integer.MAX_VALUE; // traverse until start <= end while (start <= end) { // check if it is possible to distribute // books by using mid is current minimum int mid = start + (end - start) / 2 ; if (isPossible(arr, n, m, mid)) { // update result to current distribution // as it's the best we have found till now. result = mid; // as we are finding minimum so, end = mid - 1 ; } else // if not possible, means pages should be // increased ,so update start = mid + 1 start = mid + 1 ; } // at-last return minimum no. of pages return result; } // Driver Method public static void main(String[] args) { int arr[] = { 12 , 34 , 67 , 90 }; // Number of pages in books int m = 2 ; // No. of students System.out.println( "Minimum number of pages = " + findPages(arr, arr.length, m)); } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
# Python3 program for optimal allocation of pages # Utility function to check if # current minimum value is feasible or not. def isPossible(arr, n, m, curr_min): studentsRequired = 1 curr_sum = 0 # iterate over all books for i in range (n): # check if current number of pages are # greater than curr_min that means # we will get the result after # mid no. of pages if (arr[i] > curr_min): return False # count how many students are required # to distribute curr_min pages if (curr_sum + arr[i] > curr_min): # increment student count studentsRequired + = 1 # update curr_sum curr_sum = arr[i] # if students required becomes greater # than given no. of students, return False if (studentsRequired > m): return False # else update curr_sum else : curr_sum + = arr[i] return True # function to find minimum pages def findPages(arr, n, m): sum = 0 # return -1 if no. of books is # less than no. of students if (n < m): return - 1 # Count total number of pages for i in range (n): sum + = arr[i] # initialize start as 0 pages and # end as total pages start, end = 0 , sum result = 10 * * 9 # traverse until start <= end while (start < = end): # check if it is possible to distribute # books by using mid as current minimum mid = (start + end) / / 2 if (isPossible(arr, n, m, mid)): # update result to current distribution # as it's the best we have found till now. result = mid # as we are finding minimum and books # are sorted so reduce end = mid -1 # that means end = mid - 1 else : # if not possible means pages should be # increased so update start = mid + 1 start = mid + 1 # at-last return minimum no. of pages return result # Driver Code # Number of pages in books arr = [ 12 , 34 , 67 , 90 ] n = len (arr) m = 2 # No. of students print ( "Minimum number of pages = " , findPages(arr, n, m)) # This code is contributed by Mohit Kumar |
C#
// C# program for optimal // allocation of pages using System; class GFG { // Utility function to check // if current minimum value // is feasible or not. static bool isPossible( int [] arr, int n, int m, int curr_min) { int studentsRequired = 1; int curr_sum = 0; // iterate over all books for ( int i = 0; i < n; i++) { // check if current number of // pages are greater than curr_min // that means we will get the // result after mid no. of pages if (arr[i] > curr_min) return false ; // count how many students // are required to distribute // curr_min pages if (curr_sum + arr[i] > curr_min) { // increment student count studentsRequired++; // update curr_sum curr_sum = arr[i]; // if students required becomes // greater than given no. of // students, return false if (studentsRequired > m) return false ; } // else update curr_sum else curr_sum += arr[i]; } return true ; } // function to find minimum pages static int findPages( int [] arr, int n, int m) { long sum = 0; // return -1 if no. of books // is less than no. of students if (n < m) return -1; int mx = arr[0]; // Count total number of pages for ( int i = 0; i < n; i++) { sum += arr[i]; mx = (arr[i] > mx ? arr[i] : mx); } // initialize start as 0 pages // and end as total pages int start = 0, end = ( int )sum; int result = int .MaxValue; // traverse until start <= end while (start <= end) { // check if it is possible to // distribute books by using // mid as current minimum int mid = (start + end) / 2; if (isPossible(arr, n, m, mid)) { // update result to current distribution // as it's the best we have found till now. result = mid; // as we are finding minimum and // books are sorted so reduce // end = mid -1 that means end = mid - 1; } else // if not possible means pages // should be increased so update // start = mid + 1 start = mid + 1; } // at-last return // minimum no. of pages return result; } // Drivers code static public void Main() { // Number of pages in books int [] arr = { 12, 34, 67, 90 }; int n = arr.Length; int m = 2; // No. of students Console.WriteLine( "Minimum number of pages = " + findPages(arr, n, m)); } } // This code is contributed by anuj_67. |
PHP
<?php // PHP program for optimal allocation // of pages // Utility function to check if current // minimum value is feasible or not. function isPossible( $arr , $n , $m , $curr_min ) { $studentsRequired = 1; $curr_sum = 0; // iterate over all books for ( $i = 0; $i < $n ; $i ++) { // check if current number of pages // are greater than curr_min that // means we will get the result // after mid no. of pages if ( $arr [ $i ] > $curr_min ) return false; // count how many students are // required to distribute // curr_min pages if ( $curr_sum + $arr [ $i ] > $curr_min ) { // increment student count $studentsRequired ++; // update curr_sum $curr_sum = $arr [ $i ]; // if students required becomes // greater than given no. of // students, return false if ( $studentsRequired > $m ) return false; } // else update curr_sum else $curr_sum += $arr [ $i ]; } return true; } // function to find minimum pages function findPages( $arr , $n , $m ) { $sum = 0; // return -1 if no. of books is // less than no. of students if ( $n < $m ) return -1; // Count total number of pages for ( $i = 0; $i < $n ; $i ++) $sum += $arr [ $i ]; // initialize start as 0 pages // and end as total pages $start = 0; $end = $sum ; $result = PHP_INT_MAX; // traverse until start <= end while ( $start <= $end ) { // check if it is possible to // distribute books by using // mid as current minimum $mid = (int)( $start + $end ) / 2; if (isPossible( $arr , $n , $m , $mid )) { // update result to current distribution // as it's the best we have found till now $result = $mid ; // as we are finding minimum and // books are sorted so reduce // end = mid -1 that means $end = $mid - 1; } else // if not possible means pages // should be increased so update // start = mid + 1 $start = $mid + 1; } // at-last return minimum // no. of pages return $result ; } // Driver code // Number of pages in books $arr = array (12, 34, 67, 90); $n = count ( $arr ); $m = 2; // No. of students echo "Minimum number of pages = " , findPages( $arr , $n , $m ), "\n" ; // This code is contributed by Sach_Code ?> |
Javascript
// Javascript program for optimal allocation of pages // Utility method to check if current minimum value // is feasible or not. function isPossible(arr,n,m,curr_min) { let studentsRequired = 1; let curr_sum = 0; // iterate over all books for (let i = 0; i < n; i++) { // check if current number of pages are greater // than curr_min that means we will get the result // after mid no. of pages if (arr[i] > curr_min) return false ; // count how many students are required // to distribute curr_min pages if (curr_sum + arr[i] > curr_min) { // increment student count studentsRequired++; // update curr_sum curr_sum = arr[i]; // if students required becomes greater // than given no. of students,return false if (studentsRequired > m) return false ; } // else update curr_sum else curr_sum += arr[i]; } return true ; } // method to find minimum pages function findPages(arr,n,m) { let sum = 0; int mx = arr[0] ; // return -1 if no. of books is less than // no. of students if (n < m) return -1; // Count total number of pages for (let i = 0; i < n; i++){ sum += arr[i]; mx = (arr[i] > mx ? arr[i] : mx) ; } // initialize start as 0 pages and end as // total pages let start = 0, end = sum; let result = Number.MAX_VALUE; // traverse until start <= end while (start <= end) { // check if it is possible to distribute // books by using mid as current minimum let mid =Math.floor( (start + end) / 2); if (isPossible(arr, n, m, mid)) { // if yes then find the minimum distribution result = Math.min(result, mid); // as we are finding minimum and books // are sorted so reduce end = mid -1 // that means end = mid - 1; } else // if not possible means pages should be // increased so update start = mid + 1 start = mid + 1; } // at-last return minimum no. of pages return result; } // Driver Method let arr=[12, 34, 67, 90]; let m = 2; //No. of students console.log( "Minimum number of pages = " + findPages(arr, arr.length, m)); // This code is contributed by patel2127 |
Minimum number of pages = 113
Time Complexity: O(N*log(N)), Where N is the total number of pages in the book.
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!