In simple QuickSort algorithm, we select an element as pivot, partition the array around a pivot and recur for subarrays on the left and right of the pivot.
Consider an array which has many redundant elements. For example, {1, 4, 2, 4, 2, 4, 1, 2, 4, 1, 2, 2, 2, 2, 4, 1, 4, 4, 4}. If 4 is picked as a pivot in Simple Quick Sort, we fix only one 4 and recursively process remaining occurrences.
The idea of 3 way Quick Sort is to process all occurrences of the pivot and is based on Dutch National Flag algorithm.
In 3 Way QuickSort, an array arr[l..r] is divided in 3 parts: a) arr[l..i] elements less than pivot. b) arr[i+1..j-1] elements equal to pivot. c) arr[j..r] elements greater than pivot.
Below is the implementation of the above algorithm.
C++
// C++ program for 3-way quick sort #include <bits/stdc++.h> using namespace std; /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ void partition( int a[], int l, int r, int & i, int & j) { i = l - 1, j = r; int p = l - 1, q = r; int v = a[r]; while ( true ) { // From left, find the first element greater than // or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller than // or equal to v while (v < a[--j]) if (j == l) break ; // If i and j cross, then we are done if (i >= j) break ; // Swap, so that smaller goes on left greater goes // on right swap(a[i], a[j]); // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; swap(a[p], a[i]); } // Move all same right occurrence of pivot to end of // array and keep count using q if (a[j] == v) { q--; swap(a[j], a[q]); } } // Move pivot element to its correct index swap(a[i], a[r]); // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1; for ( int k = l; k < p; k++, j--) swap(a[k], a[j]); // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1; for ( int k = r - 1; k > q; k--, i++) swap(a[i], a[k]); } // 3-way partition based quick sort void quicksort( int a[], int l, int r) { if (r <= l) return ; int i, j; // Note that i and j are passed as reference partition(a, l, r, i, j); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array void printarr( int a[], int n) { for ( int i = 0; i < n; ++i) printf ( "%d " , a[i]); printf ( "\n" ); } // Driver code int main() { int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; int size = sizeof (a) / sizeof ( int ); // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); return 0; } |
Java
// Java program for 3-way quick sort import java.util.*; class GFG { static int i, j; /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ static void partition( int a[], int l, int r) { i = l - 1 ; j = r; int p = l - 1 , q = r; int v = a[r]; while ( true ) { // From left, find the first element greater than // or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller than // or equal to v while (v < a[--j]) if (j == l) break ; // If i and j cross, then we are done if (i >= j) break ; // Swap, so that smaller goes on left greater goes // on right int temp = a[i]; a[i] = a[j]; a[j] = temp; // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; temp = a[i]; a[i] = a[p]; a[p] = temp; } // Move all same right occurrence of pivot to end of // array and keep count using q if (a[j] == v) { q--; temp = a[q]; a[q] = a[j]; a[j] = temp; } } // Move pivot element to its correct index int temp = a[i]; a[i] = a[r]; a[r] = temp; // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1 ; for ( int k = l; k < p; k++, j--) { temp = a[k]; a[k] = a[j]; a[j] = temp; } // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1 ; for ( int k = r - 1 ; k > q; k--, i++) { temp = a[i]; a[i] = a[k]; a[k] = temp; } } // 3-way partition based quick sort static void quicksort( int a[], int l, int r) { if (r <= l) return ; i = 0 ; j = 0 ; // Note that i and j are passed as reference partition(a, l, r); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array static void printarr( int a[], int n) { for ( int i = 0 ; i < n; ++i) System.out.printf( "%d " , a[i]); System.out.printf( "\n" ); } // Driver code public static void main(String[] args) { int a[] = { 4 , 9 , 4 , 4 , 1 , 9 , 4 , 4 , 9 , 4 , 4 , 1 , 4 }; int size = a.length; // Function Call printarr(a, size); quicksort(a, 0 , size - 1 ); printarr(a, size); } } // This code is contributed by Rajput-Ji |
Python3
''' This function partitions a[] in three parts a) a[first..start] contains all elements smaller than pivot b) a[start+1..mid-1] contains all occurrences of pivot c) a[mid..last] contains all elements greater than pivot ''' def partition(arr, first, last, start, mid): pivot = arr[last] end = last # Iterate while mid is not greater than end. while (mid[ 0 ] < = end): # Inter Change position of element at the starting if it's value is less than pivot. if (arr[mid[ 0 ]] < pivot): arr[mid[ 0 ]], arr[start[ 0 ]] = arr[start[ 0 ]], arr[mid[ 0 ]] mid[ 0 ] = mid[ 0 ] + 1 start[ 0 ] = start[ 0 ] + 1 # Inter Change position of element at the end if it's value is greater than pivot. elif (arr[mid[ 0 ]] > pivot): arr[mid[ 0 ]], arr[end] = arr[end], arr[mid[ 0 ]] end = end - 1 else : mid[ 0 ] = mid[ 0 ] + 1 # Function to sort the array elements in 3 cases def quicksort(arr,first,last): # First case when an array contain only 1 element if (first > = last): return # Second case when an array contain only 2 elements if (last = = first + 1 ): if (arr[first] > arr[last]): arr[first], arr[last] = arr[last], arr[first] return # Third case when an array contain more than 2 elements start = [first] mid = [first] # Function to partition the array. partition(arr, first, last, start, mid) # Recursively sort sublist containing elements that are less than the pivot. quicksort(arr, first, start[ 0 ] - 1 ) # Recursively sort sublist containing elements that are more than the pivot quicksort(arr, mid[ 0 ], last) # Code Start from here arr = [ 4 , 9 , 4 , 4 , 1 , 9 , 4 , 4 , 9 , 4 , 4 , 1 , 4 ] # Call the quicksort function. quicksort(arr, 0 , len (arr) - 1 ) # print arr after sorting the elements print (arr) |
C#
// C# program for 3-way quick sort using System; class GFG { // A function which is used to swap values static void swap<T>( ref T lhs, ref T rhs) { T temp; temp = lhs; lhs = rhs; rhs = temp; } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ public static void partition( int [] a, int l, int r, ref int i, ref int j) { i = l - 1; j = r; int p = l - 1, q = r; int v = a[r]; while ( true ) { // From left, find the first element greater // than or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller // than or equal to v while (v < a[--j]) if (j == l) break ; // If i and j cross, then we are done if (i >= j) break ; // Swap, so that smaller goes on left greater // goes on right swap( ref a[i], ref a[j]); // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; swap( ref a[p], ref a[i]); } // Move all same right occurrence of pivot to // end of array and keep count using q if (a[j] == v) { q--; swap( ref a[j], ref a[q]); } } // Move pivot element to its correct index swap( ref a[i], ref a[r]); // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1; for ( int k = l; k < p; k++, j--) swap( ref a[k], ref a[j]); // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1; for ( int k = r - 1; k > q; k--, i++) swap( ref a[i], ref a[k]); } // 3-way partition based quick sort public static void quicksort( int [] a, int l, int r) { if (r <= l) return ; int i = 0, j = 0; // Note that i and j are passed as reference partition(a, l, r, ref i, ref j); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array public static void printarr( int [] a, int n) { for ( int i = 0; i < n; ++i) Console.Write(a[i] + " " ); Console.Write( "\n" ); } // Driver code static void Main() { int [] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; int size = a.Length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); } // This code is contributed by DrRoot_ } |
Javascript
<script> // javascript program for 3-way quick sort var i, j; /* * This function partitions a in three parts a) a[l..i] contains all elements * smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) * a[j..r] contains all elements greater than pivot */ function partition(a , l , r) { i = l - 1; j = r; var p = l - 1, q = r; var v = a[r]; while ( true ) { // From left, find the first element greater than // or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller than // or equal to v while (v < a[--j]) if (j == l) break ; // If i and j cross, then we are done if (i >= j) break ; // Swap, so that smaller goes on left greater goes // on right var temp = a[i]; a[i] = a[j]; a[j] = temp; // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; temp = a[i]; a[i] = a[p]; a[p] = temp; } // Move all same right occurrence of pivot to end of // array and keep count using q if (a[j] == v) { q--; temp = a[q]; a[q] = a[j]; a[j] = temp; } } // Move pivot element to its correct index var temp = a[i]; a[i] = a[r]; a[r] = temp; // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1; for (k = l; k < p; k++, j--) { temp = a[k]; a[k] = a[j]; a[j] = temp; } // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1; for (k = r - 1; k > q; k--, i++) { temp = a[i]; a[i] = a[k]; a[k] = temp; } } // 3-way partition based quick sort function quicksort(a , l , r) { if (r <= l) return ; i = 0; j = 0; // Note that i and j are passed as reference partition(a, l, r); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array function printarr(a , n) { for (i = 0; i < n; ++i) document.write( " " + a[i]); document.write( "<br/>" ); } // Driver code var a = [ 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 ]; var size = a.length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); // This code contributed by aashish1995 </script> |
4 9 4 4 1 9 4 4 9 4 4 1 4 1 1 4 4 4 4 4 4 4 4 9 9 9
Time Complexity: O(N * log(N))
Where ‘N’ is the number of elements in the given array/list
The average number of recursive calls made to the quicksort function is log N, and every time the function is called we are traversing the given array/list which requires O(N) time. Thus, the total time complexity is O(N * log (N)).
Space Complexity: O(log N)
where ‘N’ is the number of elements in the given array/list.
Thanks to Utkarsh for suggesting above implementation.
Another Implementation using Dutch National Flag Algorithm
C++
// C++ program for 3-way quick sort #include <bits/stdc++.h> using namespace std; void swap( int * a, int * b) { int temp = *a; *a = *b; *b = temp; } // A utility function to print an array void printarr( int a[], int n) { for ( int i = 0; i < n; ++i) printf ( "%d " , a[i]); printf ( "\n" ); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm void partition( int a[], int low, int high, int & i, int & j) { // To handle 2 elements if (high - low <= 1) { if (a[high] < a[low]) swap(&a[high], &a[low]); i = low; j = high; return ; } int mid = low; int pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap(&a[low++], &a[mid++]); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap(&a[mid], &a[high--]); } // update i and j i = low - 1; j = mid; // or high+1 } // 3-way partition based quick sort void quicksort( int a[], int low, int high) { if (low >= high) // 1 or 0 elements return ; int i, j; // Note that i and j are passed as reference partition(a, low, high, i, j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver Code int main() { int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; // int a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64, // 11, 41}; int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // int a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10}; // int a[] = {4, 9, 4, 4, 9, 1, 1, 1}; int size = sizeof (a) / sizeof ( int ); // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); return 0; } |
Java
// Java program for 3-way quick sort import java.util.*; class GFG { static void swap( int [] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // A utility function to print an array static void printarr( int a[], int n) { for ( int i = 0 ; i < n; ++i) System.out.printf( "%d " , a[i]); System.out.printf( "\n" ); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm static void partition( int a[], int low, int high, int i, int j) { // To handle 2 elements if (high - low <= 1 ) { if (a[high] < a[low]) swap(a, high, low); i = low; j = high; return ; } int mid = low; int pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap(a, low++, mid++); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap(a, mid, high--); } // update i and j i = low - 1 ; j = mid; // or high+1 } // 3-way partition based quick sort static void quicksort( int a[], int low, int high) { if (low >= high) // 1 or 0 elements return ; int i=low, j=high; // Note that i and j are passed partition(a, low, high, i, j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver Code public static void main(String[] args) { int a[] = { 4 , 9 , 4 , 4 , 1 , 9 , 4 , 4 , 9 , 4 , 4 , 1 , 4 }; // int a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64, // 11, 41}; int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // int a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10}; // int a[] = {4, 9, 4, 4, 9, 1, 1, 1}; int size = a.length; // Function Call printarr(a, size); quicksort(a, 0 , size - 1 ); printarr(a, size); } } // This code is contributed by Pushpesh Raj. |
Python3
# python3 program for 3-way quick sort # Function to find lexicographically minimum def swap(a,i,j) : temp = a[i] a[i] = a[j] a[j] = temp # A utility function to print an array def printarr(a, n) : for i in range (n) : print (a[i],end = ' ' ) print ( "\n" ) ''' This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot ''' # It uses Dutch National Flag Algorithm def partition(a, low, high, i, j) : # To handle 2 elements if high - low < = 1 : if a[high] < a[low] : swap(a,high, low) i = low j = high return mid = low; pivot = a[high]; while mid < = high : if a[mid] < pivot : swap(a,low,mid) low + = 1 mid + = 1 elif a[mid] = = pivot : mid + = 1 elif a[mid] > pivot : swap(a,mid,high) high - = 1 # update i and j i = low - 1 j = mid # or high+1 # 3-way partition based quick sort def quickSort(a,low,high) : if low > = high : # 1 or 0 elements return i = low; j = high; # Note that i and j are passed as reference partition(a,low,high,i,j) # Recur two halves quickSort(a,low,i) quickSort(a,j,high) # Driver code if __name__ = = "__main__" : a = [ 4 , 9 , 4 , 4 , 1 , 9 , 4 , 4 , 9 , 4 , 4 , 1 , 4 ] size = len (a) printarr(a,size) quickSort(a, 0 ,size - 1 ) printarr(a,size) #this code is contributed by aditya942003patil |
C#
// C# program for 3-way quick sort using System; class GFG { // A function which is used to swap values static void swap<T>( ref T lhs, ref T rhs) { T temp; temp = lhs; lhs = rhs; rhs = temp; } // A utility function to print an array public static void printarr( int [] a, int n) { for ( int i = 0; i < n; ++i) Console.Write(a[i] + " " ); Console.Write( "\n" ); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm public static void partition( int [] a, int low, int high, ref int i, ref int j) { // To handle 2 elements if (high - low <= 1) { if (a[high] < a[low]) swap( ref a[high], ref a[low]); i = low; j = high; return ; } int mid = low; int pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap( ref a[low++], ref a[mid++]); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap( ref a[mid], ref a[high--]); } // update i and j i = low - 1; j = mid; // or high+1 } // 3-way partition based quick sort public static void quicksort( int [] a, int low, int high) { if (low >= high) // 1 or 0 elements return ; int i = 0, j = 0; // Note that i and j are passed as reference partition(a, low, high, ref i, ref j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver code static void Main() { int [] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; // int[] a = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, // 64, 11, 41}; int[] a = {1, 2, 3, 4, 5, 6, 7, 8, 9, // 10}; int[] a = {91, 82, 73, 64, 55, 46, 37, 28, // 19, 10}; int[] a = {4, 9, 4, 4, 9, 1, 1, 1}; int size = a.Length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); } // This code is contributed by DrRoot_ } |
Javascript
<script> // Javascript program for 3-way quick sort function swap(arr, i, j) { let temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // A utility function to print an array function printarr(a, n) { for (let i = 0; i < n; ++i) document.write(a[i]); document.write( "<br>" ); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm function partition(a, low, high, i, j) { // To handle 2 elements if (high - low <= 1) { if (a[high] < a[low]) swap(a, high, low); i = low; j = high; return ; } let mid = low; let pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap(a, low++, mid++); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap(a, mid, high--); } // update i and j i = low - 1; j = mid; // or high+1 } // 3-way partition based quick sort function quicksort(a, low, high) { if (low >= high) // 1 or 0 elements return ; let i = low, j = high; // Note that i and j are passed partition(a, low, high, i, j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver Code let a = [4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4]; // let a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64, // 11, 41}; let a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // let a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10}; // let a[] = {4, 9, 4, 4, 9, 1, 1, 1}; let size = a.length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); // This code is contributed by gfgking </script> |
4 9 4 4 1 9 4 4 9 4 4 1 4 1 1 4 4 4 4 4 4 4 4 9 9 9
Time Complexity: O(N2) The time complexity for this code is O(N*log(N)) in the average and best-case scenarios, and O(N^2) in the worst-case scenario.
Space Complexity: O(log N)
Thanks Aditya Goel for this implementation.
Reference:
http://algs4.cs.princeton.edu/lectures/23DemoPartitioning.pdf
http://www.sorting-algorithms.com/quick-sort-3-way
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!