It is highly recommended to read the previous articles on Van Emde Boas Tree first.
Procedure for Delete:
Here we are assuming that the key is already present in the tree.
- First we check if only one key is present, then assign the maximum and minimum of the tree to null value to delete the key.
- Base Case: If the universe size of the tree is two then, after the above condition of only one key is present is false, exactly two key is present in the tree (after the above condition turns out to false), So delete the query key by assigning maximum and minimum of the tree to another key present in the tree.
- Recursive Case:
- If the key is the minimum of the tree then find the next minimum of the tree and assign it as the minimum of the tree and delete query key.
- Now the query key is not present in the tree. We will have to change the rest of the structure in the tree to eliminate the key completely:
- If the minimum of the cluster of the query key is null then we will delete it from summary as well. Also, if the key is the maximum of the tree then we will find new maximum and assign it as the maximum of the tree.
- Otherwise, if the key is maximum of the tree then find the new maximum and assign it as the maximum of the tree.
Below is the series of images representing ‘delete key-0 query’ over the VEB Tree with 0, 1, 2 keys are present:
Step 1: As 0 is the minimum of the tree, it will satisfy the first condition of the else part of the algorithm.
First, it finds the next maximum which is 1 and set it as a minimum.
Step 2: Now it will delete key 1 from the cluster[0].
Step 3: Next condition, cluster[0] has no key, is true, so it will clear the key from the summary as well.
C++
#include <bits/stdc++.h> using namespace std; class Van_Emde_Boas { public : int universe_size; int minimum; int maximum; Van_Emde_Boas* summary; vector<Van_Emde_Boas*> clusters; // Function to return cluster numbers // in which key is present int high( int x) { int div = ceil ( sqrt (universe_size)); return x / div ; } // Function to return position of x in cluster int low( int x) { int mod = ceil ( sqrt (universe_size)); return x % mod; } // Function to return the index from // cluster number and position int generate_index( int x, int y) { int ru = ceil ( sqrt (universe_size)); return x * ru + y; } // Constructor Van_Emde_Boas( int size) { universe_size = size; minimum = -1; maximum = -1; // Base case if (size <= 2) { summary = nullptr; clusters = vector<Van_Emde_Boas*>(0, nullptr); } else { int no_clusters = ceil ( sqrt (size)); // Assigning VEB(sqrt(u)) to summary summary = new Van_Emde_Boas(no_clusters); // Creating array of VEB Tree pointers of size // sqrt(u) clusters = vector<Van_Emde_Boas*>(no_clusters, nullptr); // Assigning VEB(sqrt(u)) to all its clusters for ( int i = 0; i < no_clusters; i++) { clusters[i] = new Van_Emde_Boas( ceil ( sqrt (size))); } } } }; // Function to return the minimum value // from the tree if it exists int VEB_minimum(Van_Emde_Boas* helper) { return (helper->minimum == -1 ? -1 : helper->minimum); } // Function to return the maximum value // from the tree if it exists int VEB_maximum(Van_Emde_Boas* helper) { return (helper->maximum == -1 ? -1 : helper->maximum); } // Function to insert a key in the tree void insert(Van_Emde_Boas* helper, int key) { // If no key is present in the tree // then set both minimum and maximum // to the key (Read the previous article // for more understanding about it) if (helper->minimum == -1) { helper->minimum = key; helper->maximum = key; } else { if (key < helper->minimum) { // If the key is less than the current minimum // then swap it with the current minimum // because this minimum is actually // minimum of one of the internal cluster // so as we go deeper into the Van Emde Boas // we need to take that minimum to its real // position This concept is similar to "Lazy // Propagation" swap(helper->minimum, key); } // Not base case then... if (helper->universe_size > 2) { // If no key is present in the cluster then // insert key into both cluster and summary if (VEB_minimum( helper->clusters[helper->high(key)]) == -1) { insert(helper->summary, helper->high(key)); // Sets the minimum and maximum of cluster // to the key as no other keys are present // we will stop at this level we are not // going deeper into the structure like Lazy // Propagation helper->clusters[helper->high(key)]->minimum = helper->low(key); helper->clusters[helper->high(key)]->maximum = helper->low(key); } else { // If there are other elements in the tree // then recursively go deeper into the // structure to set attributes accordingly insert(helper->clusters[helper->high(key)], helper->low(key)); } } // Sets the key as maximum it is greater than // current maximum if (key > helper->maximum) { helper->maximum = key; } } } // Function that returns true if the // key is present in the tree bool isMember(Van_Emde_Boas* helper, int key) { // If universe_size is less than the key // then we can not search the key so returns // false if (helper->universe_size < key) { return false ; } // If at any point of our traversal // of the tree if the key is the minimum // or the maximum of the subtree, then // the key is present so returns true if (helper->minimum == key || helper->maximum == key) { return true ; } else { // If after attending above condition, // if the size of the tree is 2 then // the present key must be // maximum or minimum of the tree if it // is not then it returns false because key // can not be present in the sub tree if (helper->universe_size == 2) { return false ; } else { // Recursive call over the cluster // in which the key can be present // and also pass the new position of the key // i.e., low(key) return isMember( helper->clusters[helper->high(key)], helper->low(key)); } } } // Function to find the successor of the given key int VEB_successor(Van_Emde_Boas* helper, int key) { // Base case: If key is 0 and its successor // is present then return 1 else return null if (helper->universe_size == 2) { if (key == 0 && helper->maximum == 1) { return 1; } else { return -1; } } // If key is less than minimum then return minimum // because it will be successor of the key else if (helper->minimum != -1 && key < helper->minimum) { return helper->minimum; } else { // Find successor inside the cluster of the key // First find the maximum in the cluster int max_incluster = VEB_maximum( helper->clusters[helper->high(key)]); int offset{ 0 }, succ_cluster{ 0 }; // If there is any key( maximum!=-1 ) present in the // cluster then find the successor inside of the // cluster if (max_incluster != -1 && helper->low(key) < max_incluster) { offset = VEB_successor( helper->clusters[helper->high(key)], helper->low(key)); return helper->generate_index(helper->high(key), offset); } // Otherwise look for the next cluster with at least // one key present else { succ_cluster = VEB_successor(helper->summary, helper->high(key)); // If there is no cluster with any key present // in summary then return null if (succ_cluster == -1) { return -1; } // Find minimum in successor cluster which will // be the successor of the key else { offset = VEB_minimum( helper->clusters[succ_cluster]); return helper->generate_index(succ_cluster, offset); } } } } // Function to find the predecessor of the given key int VEB_predecessor(Van_Emde_Boas* helper, int key) { // Base case: If the key is 1 and it's predecessor // is present then return 0 else return null if (helper->universe_size == 2) { if (key == 1 && helper->minimum == 0) { return 0; } else return -1; } // If the key is greater than maximum of the tree then // return key as it will be the predecessor of the key else if (helper->maximum != -1 && key > helper->maximum) { return helper->maximum; } else { // Find predecessor in the cluster of the key // First find minimum in the key to check whether // any key is present in the cluster int min_incluster = VEB_minimum( helper->clusters[helper->high(key)]); int offset{ 0 }, pred_cluster{ 0 }; // If any key is present in the cluster then find // predecessor in the cluster if (min_incluster != -1 && helper->low(key) > min_incluster) { offset = VEB_predecessor( helper->clusters[helper->high(key)], helper->low(key)); return helper->generate_index(helper->high(key), offset); } // Otherwise look for predecessor in the summary // which returns the index of predecessor cluster // with any key present else { pred_cluster = VEB_predecessor( helper->summary, helper->high(key)); // If no predecessor cluster then... if (pred_cluster == -1) { // Special case which is due to lazy // propagation if (helper->minimum != -1 && key > helper->minimum) { return helper->minimum; } else return -1; } // Otherwise find maximum in the predecessor // cluster else { offset = VEB_maximum( helper->clusters[pred_cluster]); return helper->generate_index(pred_cluster, offset); } } } } // Function to delete a key from the tree // assuming that the key is present void VEB_delete(Van_Emde_Boas* helper, int key) { // If only one key is present, it means // that it is the key we want to delete // Same condition as key == max && key == min if (helper->maximum == helper->minimum) { helper->minimum = -1; helper->maximum = -1; } // Base case: If the above condition is not true // i.e. the tree has more than two keys // and if its size is two than a tree has exactly two // keys. We simply delete it by assigning it to another // present key value else if (helper->universe_size == 2) { if (key == 0) { helper->minimum = 1; } else { helper->minimum = 0; } helper->maximum = helper->minimum; } else { // As we are doing something similar to lazy // propagation we will basically find next bigger // key and assign it as minimum if (key == helper->minimum) { int first_cluster = VEB_minimum(helper->summary); key = helper->generate_index( first_cluster, VEB_minimum( helper->clusters[first_cluster])); helper->minimum = key; } // Now we delete the key VEB_delete(helper->clusters[helper->high(key)], helper->low(key)); // After deleting the key, rest of the improvements // If the minimum in the cluster of the key is -1 // then we have to delete it from the summary to // eliminate the key completely if (VEB_minimum(helper->clusters[helper->high(key)]) == -1) { VEB_delete(helper->summary, helper->high(key)); // After the above condition, if the key // is maximum of the tree then... if (key == helper->maximum) { int max_insummary = VEB_maximum(helper->summary); // If the max value of the summary is null // then only one key is present so // assign min. to max. if (max_insummary == -1) { helper->maximum = helper->minimum; } else { // Assign global maximum of the tree, // after deleting our query-key helper->maximum = helper->generate_index( max_insummary, VEB_maximum( helper->clusters [max_insummary])); } } } // Simply find the new maximum key and // set the maximum of the tree // to the new maximum else if (key == helper->maximum) { helper->maximum = helper->generate_index( helper->high(key), VEB_maximum( helper->clusters[helper->high(key)])); } } } // Driver code int main() { Van_Emde_Boas* end = new Van_Emde_Boas(8); // Inserting Keys insert(end, 1); insert(end, 0); insert(end, 2); insert(end, 4); // Before deletion cout << isMember(end, 2) << endl; cout << VEB_predecessor(end, 4) << " " << VEB_successor(end, 1) << endl; // Delete only if the key is present if (isMember(end, 2)) VEB_delete(end, 2); // After deletion cout << isMember(end, 2) << endl; cout << VEB_predecessor(end, 4) << " " << VEB_successor(end, 1) << endl; } |
Java
import java.util.*; class Van_Emde_Boas { public int universe_size; public int minimum; public int maximum; public Van_Emde_Boas summary; public ArrayList<Van_Emde_Boas> clusters; public Van_Emde_Boas( int size) { universe_size = size; minimum = - 1 ; maximum = - 1 ; // Base case if (size <= 2 ) { summary = null ; clusters = new ArrayList<Van_Emde_Boas>( 0 ); } else { int no_clusters = ( int )Math.ceil(Math.sqrt(size)); summary = new Van_Emde_Boas(no_clusters); clusters = new ArrayList<Van_Emde_Boas>(no_clusters); for ( int i = 0 ; i < no_clusters; i++) { clusters.add( new Van_Emde_Boas( ( int )Math.ceil(Math.sqrt(size)))); } } } // Function to return cluster numbers // in which key is present public int high( int x) { int div = ( int )Math.ceil(Math.sqrt(universe_size)); return x / div; } // Function to return position of x in cluster public int low( int x) { int mod = ( int )Math.ceil(Math.sqrt(universe_size)); return x % mod; } // Function to return position of x in cluster public int generate_index( int x, int y) { int ru = ( int )Math.ceil(Math.sqrt(universe_size)); return x * ru + y; } } class Main { // Function to return the minimum value // from the tree if it exists public static int VEB_minimum(Van_Emde_Boas helper) { return (helper.minimum == - 1 ? - 1 : helper.minimum); } // Function to return the maximum value // from the tree if it exists public static int VEB_maximum(Van_Emde_Boas helper) { return (helper.maximum == - 1 ? - 1 : helper.maximum); } // Function to insert a key in the tree static void insert(Van_Emde_Boas helper, int key) { // If no key is present in the tree // then set both minimum and maximum // to the key (Read the previous article // for more understanding about it) if (helper.minimum == - 1 ) { helper.minimum = key; helper.maximum = key; } else { // If the key is less than the current minimum // then swap it with the current minimum // because this minimum is actually // minimum of one of the internal cluster if (key < helper.minimum) { int temp = helper.minimum; helper.minimum = key; key = temp; } // Not base case then... if (helper.universe_size > 2 ) { // If no key is present in the cluster then // insert key into both cluster and summary if (VEB_minimum(helper.clusters.get( helper.high(key))) == - 1 ) { insert(helper.summary, helper.high(key)); // Sets the minimum and maximum of // cluster to the key as no other keys // are present we will stop at this // level helper.clusters.get(helper.high(key)) .minimum = helper.low(key); helper.clusters.get(helper.high(key)) .maximum = helper.low(key); } else { // If there are other elements in the // tree then recursively go deeper into // the structure to set attributes // accordingly insert(helper.clusters.get( helper.high(key)), helper.low(key)); } } // Sets the key as maximum it is greater than // current maximum if (key > helper.maximum) { helper.maximum = key; } } } // Function that returns true if the // key is present in the tree public static boolean isMember(Van_Emde_Boas helper, int key) { if (helper.universe_size < key) { return false ; } if (helper.minimum == key || helper.maximum == key) { return true ; } else { // If after attending above condition,if the // size of the tree is 2 then the present key // must be maximum or minimum of the tree if (helper.universe_size == 2 ) { return false ; } else { return isMember( helper.clusters.get(helper.high(key)), helper.low(key)); } } } // Function to find the successor of the given key public static int VEB_successor(Van_Emde_Boas helper, int key) { if (helper.universe_size == 2 ) { if (key == 0 && helper.maximum == 1 ) { return 1 ; } else { return - 1 ; } } // If key is less than minimum then return minimum // because it will be successor of the key else if (helper.minimum != - 1 && key < helper.minimum) { return helper.minimum; } else { // Find successor inside the cluster of the key // First find the maximum in the cluster int max_incluster = VEB_maximum( helper.clusters.get(helper.high(key))); int offset = 0 ; int succ_cluster = 0 ; // If there is any key( maximum!=-1 ) present in // the cluster then find the successor inside of // the cluster if (max_incluster != - 1 && helper.low(key) < max_incluster) { offset = VEB_successor( helper.clusters.get(helper.high(key)), helper.low(key)); return helper.generate_index( helper.high(key), offset); } else { succ_cluster = VEB_successor( helper.summary, helper.high(key)); if (succ_cluster == - 1 ) { return - 1 ; } // Find minimum in successor cluster which // will be the successor of the key else { offset = VEB_minimum( helper.clusters.get(succ_cluster)); return helper.generate_index( succ_cluster, offset); } } } } // Function to find the predecessor of the given key public static int VEB_predecessor(Van_Emde_Boas helper, int key) { if (helper.universe_size == 2 ) { if (key == 1 && helper.minimum == 0 ) { return 0 ; } else { return - 1 ; } } // If the key is greater than maximum of the tree // then // return key as it will be the predecessor of the // key else if (helper.maximum != - 1 && key > helper.maximum) { return helper.maximum; } else { // Find predecessor in the cluster of the key // First find minimum in the key to check // whether any key is present in the cluster int min_incluster = VEB_minimum( helper.clusters.get(helper.high(key))); int offset = 0 ; int pred_cluster = 0 ; // If any key is present in the cluster then // find predecessor in the cluster if (min_incluster != - 1 && helper.low(key) > min_incluster) { offset = VEB_predecessor( helper.clusters.get(helper.high(key)), helper.low(key)); return helper.generate_index( helper.high(key), offset); } else { // returns the index of predecessor cluster // with any key present pred_cluster = VEB_predecessor( helper.summary, helper.high(key)); // If no predecessor cluster then... if (pred_cluster == - 1 ) { if (helper.minimum != - 1 && key > helper.minimum) { return helper.minimum; } else { return - 1 ; } } // Otherwise find maximum in the // predecessor cluster else { offset = VEB_maximum( helper.clusters.get(pred_cluster)); return helper.generate_index( pred_cluster, offset); } } } } public static void VEB_delete(Van_Emde_Boas helper, int key) { // If only one key is present, it means // that it is the key we want to delete if (helper.maximum == helper.minimum) { helper.minimum = - 1 ; helper.maximum = - 1 ; } // Base case: If the above condition is not true // i.e. the tree has more than two keys // and if its size is two than a tree has exactly // two keys. else if (helper.universe_size == 2 ) { if (key == 0 ) { helper.minimum = 1 ; } else { helper.minimum = 0 ; } helper.maximum = helper.minimum; } else { // As we are doing something similar to lazy // propagation we will basically find next // bigger key and assign it as minimum if (key == helper.minimum) { int first_cluster = VEB_minimum(helper.summary); key = helper.generate_index( first_cluster, VEB_minimum(helper.clusters.get( first_cluster))); helper.minimum = key; } // Now we delete the key VEB_delete( helper.clusters.get(helper.high(key)), helper.low(key)); // After deleting the key, rest of the // improvements // If the minimum in the cluster of the key is // -1 then we have to delete it from the summary // to eliminate the key completely if (VEB_minimum( helper.clusters.get(helper.high(key))) == - 1 ) { VEB_delete(helper.summary, helper.high(key)); // After the above condition, if the key // is maximum of the tree then. if (key == helper.maximum) { int max_insummary = VEB_maximum(helper.summary); if (max_insummary == - 1 ) { helper.maximum = helper.minimum; } else { // Assign global maximum of the // tree, after deleting our // query-key helper.maximum = helper.generate_index( max_insummary, VEB_maximum( helper.clusters.get( max_insummary))); } } } // Simply find the new maximum key and // set the maximum of the tree // to the new maximum else if (key == helper.maximum) { helper.maximum = helper.generate_index( helper.high(key), VEB_maximum(helper.clusters.get( helper.high(key)))); } } } // Driver code public static void main(String[] args) { Van_Emde_Boas end = new Van_Emde_Boas( 8 ); insert(end, 1 ); insert(end, 0 ); insert(end, 2 ); insert(end, 4 ); // Before deletion System.out.println(isMember(end, 2 )); System.out.println(VEB_predecessor(end, 4 )); System.out.println(VEB_successor(end, 1 )); // Delete only if the key is present if (isMember(end, 2 )) VEB_delete(end, 2 ); // After deletion System.out.println(isMember(end, 2 )); System.out.println(VEB_predecessor(end, 4 )); System.out.println(VEB_successor(end, 1 )); } } |
Python3
import math class Van_Emde_Boas: # Constructor def __init__( self , size): self .universe_size = size self .minimum = None self .maximum = None if size < = 2 : self .summary = None self .clusters = [ None ] * 0 else : no_clusters = math.ceil(math.sqrt(size)) self .summary = Van_Emde_Boas(no_clusters) self .clusters = [Van_Emde_Boas( math.ceil(math.sqrt(size))) for i in range (no_clusters)] # Function to return cluster numbers # in which key is present def high( self , x): div = math.ceil(math.sqrt( self .universe_size)) return x / / div def low( self , x): mod = math.ceil(math.sqrt( self .universe_size)) return x % mod # Function to return the index from # cluster number and position def generate_index( self , x, y): ru = math.ceil(math.sqrt( self .universe_size)) return (x or 0 ) * ru + (y or 0 ) # Function to return the minimum value # from the tree if it exists def VEB_minimum(helper): return helper.minimum # Function to return the maximum value # from the tree if it exists def VEB_maximum(helper): return helper.maximum # Function to check member def isMember(helper, key): if helper.universe_size < key: return False if helper.minimum = = key or helper.maximum = = key: return True if helper.universe_size = = 2 : return False return isMember(helper.clusters[helper.high(key)], helper.low(key)) # Function to insert a key in the tree def insert(helper, key): # If no key is present in the tree # then set both minimum and maximum # to the key (Read the previous article # for more understanding about it) if helper.minimum is None : helper.minimum = key helper.maximum = key else : if key < helper.minimum: # If the key is less than the current minimum # then swap it with the current minimum # because this minimum is actually # minimum of one of the internal cluster # so as we go deeper into the Van Emde Boas # we need to take that minimum to its real position # This concept is similar to "Lazy Propagation" helper.minimum, key = key, helper.minimum if helper.universe_size > 2 : if VEB_minimum(helper.clusters[helper.high(key)]) is None : insert(helper.summary, helper.high(key)) # Sets the minimum and maximum of cluster to the key # as no other keys are present we will stop at this level # we are not going deeper into the structure like # Lazy Propagation helper.clusters[helper.high(key)].minimum = helper.low(key) helper.clusters[helper.high(key)].maximum = helper.low(key) else : # If there are other elements in the tree then recursively # go deeper into the structure to set attributes accordingly insert(helper.clusters[helper.high(key)], helper.low(key)) if key > helper.maximum: helper.maximum = key # Function to find the successor of the given key def VEB_successor(helper, x): # Base case: If key is 0 and its successor # is present then return 1 else return null if helper.universe_size = = 2 : if x = = 0 and helper.maximum = = 1 : return 1 else : return None # If key is less than minimum then return minimum # because it will be successor of the key elif helper.minimum is not None and x < helper.minimum: return helper.minimum else : # Find successor inside the cluster of the key # First find the maximum in the cluster max_in_cluster = VEB_maximum(helper.clusters[helper.high(x)]) # If there is any key( maximum!=-1 ) present in the cluster then find # the successor inside of the cluster if max_in_cluster is not None and helper.low(x) < max_in_cluster: offset = VEB_successor( helper.clusters[helper.high(x)], helper.low(x)) return helper.generate_index(helper.high(x), offset) # Otherwise look for the next cluster with at least one key present else : succ_cluster = VEB_successor(helper.summary, helper.high(x)) # If there is no cluster with any key present # in summary then return null if succ_cluster is None : return None # Find minimum in successor cluster which will # be the successor of the key else : offset = VEB_minimum(helper.clusters[succ_cluster]) return helper.generate_index(succ_cluster, offset) # Function to find the predecessor of the given key def VEB_predecessor(helper, x): # Base case: If the key is 1 and it's predecessor # is present then return 0 else return null if helper.universe_size = = 2 : if x = = 1 and helper.minimum = = 0 : return 0 else : return None # If the key is greater than maximum of the tree then # return key as it will be the predecessor of the key elif helper.maximum is not None and x > helper.maximum: return helper.maximum else : # Find predecessor in the cluster of the key # First find minimum in the key to check whether any key # is present in the cluster min_in_cluster = VEB_minimum(helper.clusters[helper.high(x)]) # If any key is present in the cluster then find predecessor in # the cluster if min_in_cluster is not None and helper.low(x) > min_in_cluster: offset = VEB_predecessor( helper.clusters[helper.high(x)], helper.low(x)) return helper.generate_index(helper.high(x), offset) # Otherwise look for predecessor in the summary which # returns the index of predecessor cluster with any key present else : pred_cluster = VEB_predecessor(helper.summary, helper.high(x)) # If no predecessor cluster then... if pred_cluster is None : # Special case which is due to lazy propagation if helper.minimum is not None and x > helper.minimum: return helper.minimum else : return None # Otherwise find maximum in the predecessor cluster else : offset = VEB_maximum(helper.clusters[pred_cluster]) return helper.generate_index(pred_cluster, offset) def VEB_delete(helper, key): # If only one key is present, it means # that it is the key we want to delete # Same condition as key == max && key == min if helper.maximum = = helper.minimum: helper.minimum = - 1 helper.maximum = - 1 # Base case: If the above condition is not true # i.e. the tree has more than two keys # and if its size is two than a tree has exactly two keys. # We simply delete it by assigning it to another # present key value elif helper.universe_size = = 2 : if key = = 0 : helper.minimum = 1 else : helper.minimum = 0 helper.maximum = helper.minimum else : # As we are doing something similar to lazy propagation # we will basically find next bigger key # and assign it as minimum if key = = helper.minimum: first_cluster = VEB_minimum(helper.summary) key = helper.generate_index( first_cluster, VEB_minimum(helper.clusters[first_cluster])) helper.minimum = key VEB_delete(helper.clusters[helper.high(key)], helper.low(key)) # After deleting the key, rest of the improvements # If the minimum in the cluster of the key is -1 # then we have to delete it from the summary to # eliminate the key completely if VEB_minimum(helper.clusters[helper.high(key)]) = = - 1 : VEB_delete(helper.summary, helper.high(key)) # After the above condition, if the key # is maximum of the tree then... if key = = helper.maximum: max_insummary = VEB_maximum(helper.summary) # If the max value of the summary is null # then only one key is present so # assign min. to max. if max_insummary = = - 1 : helper.maximum = helper.minimum else : # Assign global maximum of the tree, after deleting # our query-key helper.maximum = helper.generate_index( max_insummary, VEB_maximum(helper.clusters[max_insummary])) # Simply find the new maximum key and # set the maximum of the tree # to the new maximum elif key = = helper.maximum: helper.maximum = helper.generate_index(helper.high( key), VEB_maximum(helper.clusters[helper.high(key)])) # Driver code veb = Van_Emde_Boas( 8 ) # Inserting keys insert(veb, 1 ) insert(veb, 0 ) insert(veb, 2 ) insert(veb, 4 ) print (isMember(veb, 2 )) print (VEB_predecessor(veb, 4 ), VEB_successor(veb, 1 )) if isMember(veb, 2 ): VEB_delete(veb, 2 ) print (isMember(veb, 2 )) print (VEB_predecessor(veb, 4 ), VEB_successor(veb, 1 )) |
C#
using System; using System.Collections.Generic; public class Van_Emde_Boas { public int universe_size; public int minimum; public int maximum; public Van_Emde_Boas summary; public List<Van_Emde_Boas> clusters; public Van_Emde_Boas( int size) { universe_size = size; minimum = -1; maximum = -1; // Base case if (size <= 2) { summary = null ; clusters = new List<Van_Emde_Boas>(0); } else { int no_clusters = ( int )Math.Ceiling(Math.Sqrt(size)); summary = new Van_Emde_Boas(no_clusters); clusters = new List<Van_Emde_Boas>(no_clusters); for ( int i = 0; i < no_clusters; i++) { clusters.Add( new Van_Emde_Boas( ( int )Math.Ceiling(Math.Sqrt(size)))); } } } // Function to return cluster numbers // in which key is present public int high( int x) { int div = ( int )Math.Ceiling(Math.Sqrt(universe_size)); return x / div; } // Function to return position of x in cluster public int low( int x) { int mod = ( int )Math.Ceiling(Math.Sqrt(universe_size)); return x % mod; } // Function to return position of x in cluster public int generate_index( int x, int y) { int ru = ( int )Math.Ceiling(Math.Sqrt(universe_size)); return x * ru + y; } } public class Main_Program { // Function to return the minimum value // from the tree if it exists public static int VEB_minimum(Van_Emde_Boas helper) { return (helper.minimum == -1 ? -1 : helper.minimum); } // Function to return the maximum value // from the tree if it exists public static int VEB_maximum(Van_Emde_Boas helper) { return (helper.maximum == -1 ? -1 : helper.maximum); } // Function to insert a key in the tree static void insert(Van_Emde_Boas helper, int key) { // If no key is present in the tree // then set both minimum and maximum // to the key (Read the previous article // for more understanding about it) if (helper.minimum == -1) { helper.minimum = key; helper.maximum = key; } else { // If the key is less than the current minimum // then swap it with the current minimum // because this minimum is actually // minimum of one of the internal cluster if (key < helper.minimum) { int temp = helper.minimum; helper.minimum = key; key = temp; } // Not base case then... if (helper.universe_size > 2) { // If no key is present in the cluster then // insert key into both cluster and summary if (VEB_minimum(helper.clusters[helper.high(key)]) == -1) { insert(helper.summary, helper.high(key)); // Sets the minimum and maximum of // cluster to the key as no other keys // are present we will stop at this // level helper.clusters[helper.high(key)] .minimum = helper.low(key); helper.clusters[helper.high(key)] .maximum = helper.low(key); } else { // If there are other elements in the // tree then recursively go deeper into // the structure to set attributes // accordingly insert(helper.clusters[ helper.high(key)], helper.low(key)); } } // Sets the key as maximum it is greater than // current maximum if (key > helper.maximum) { helper.maximum = key; } } } // Function to find the successor of the given key public static int VEB_successor(Van_Emde_Boas helper, int key) { if (helper.universe_size == 2) { if (key == 0 && helper.maximum == 1) { return 1; } else { return -1; } } // If key is less than minimum then return minimum // because it will be successor of the key else if (helper.minimum != -1 && key < helper.minimum) { return helper.minimum; } else { // Find successor inside the cluster of the key // First find the maximum in the cluster int max_incluster = VEB_maximum(helper.clusters[helper.high(key)]); int offset = 0; int succ_cluster = 0; // If there is any key( maximum!=-1 ) present in // the cluster then find the successor inside of // the cluster if (max_incluster != -1 && helper.low(key) < max_incluster) { offset = VEB_successor(helper.clusters[helper.high(key)], helper.low(key)); return helper.generate_index(helper.high(key), offset); } else { succ_cluster = VEB_successor(helper.summary, helper.high(key)); if (succ_cluster == -1) { return -1; } else { // Find minimum in successor cluster which // will be the successor of the key offset = VEB_minimum(helper.clusters[succ_cluster]); return helper.generate_index(succ_cluster, offset); } } } } // Function to find the predecessor of the given key public static int VEB_predecessor(Van_Emde_Boas helper, int key) { if (helper.universe_size == 2) { if (key == 1 && helper.minimum == 0) { return 0; } else { return -1; } } // If the key is greater than maximum of the tree // then // return key as it will be the predecessor of the // key else if (helper.maximum != -1 && key > helper.maximum) { return helper.maximum; } else { // Find predecessor in the cluster of the key // First find minimum in the key to check // whether any key is present in the cluster int min_incluster = VEB_minimum(helper.clusters[helper.high(key)]); int offset = 0; int pred_cluster = 0; // If any key is present in the cluster then // find predecessor in the cluster if (min_incluster != -1 && helper.low(key) > min_incluster) { offset = VEB_predecessor( helper.clusters[helper.high(key)], helper.low(key)); return helper.generate_index(helper.high(key), offset); } else { // returns the index of predecessor cluster // with any key present pred_cluster = VEB_predecessor( helper.summary, helper.high(key)); if (pred_cluster == -1) { if (helper.minimum != -1 && key > helper.minimum) { return helper.minimum; } else { return -1; } } // Otherwise find maximum in the // predecessor cluster else { offset = VEB_maximum(helper.clusters[pred_cluster]); return helper.generate_index(pred_cluster, offset); } } } } public static void VEB_delete(Van_Emde_Boas helper, int key) { // If only one key is present, it means // that it is the key we want to delete if (helper.maximum == helper.minimum) { helper.minimum = -1; helper.maximum = -1; } // Base case: If the above condition is not true // i.e. the tree has more than two keys // and if its size is two than a tree has exactly // two keys. else if (helper.universe_size == 2) { if (key == 0) { helper.minimum = 1; } else { helper.minimum = 0; } helper.maximum = helper.minimum; } else { // As we are doing something similar to lazy // propagation we will basically find next // bigger key and assign it as minimum if (key == helper.minimum) { int first_cluster = VEB_minimum(helper.summary); key = helper.generate_index(first_cluster, VEB_minimum(helper.clusters[first_cluster])); helper.minimum = key; } // Now we delete the key VEB_delete(helper.clusters[helper.high(key)], helper.low(key)); // After deleting the key, rest of the // improvements // If the minimum in the cluster of the key is // -1 then we have to delete it from the summary // to eliminate the key completely if (VEB_minimum(helper.clusters[helper.high(key)]) == -1) { VEB_delete(helper.summary, helper.high(key)); if (key == helper.maximum) { int max_insummary = VEB_maximum(helper.summary); if (max_insummary == -1) { helper.maximum = helper.minimum; } else { // Assign global maximum of the // tree, after deleting our // query-key helper.maximum = helper.generate_index(max_insummary, VEB_maximum(helper.clusters[max_insummary])); } } } // Simply find the new maximum key and // set the maximum of the tree // to the new maximum else if (key == helper.maximum) { helper.maximum = helper.generate_index(helper.high(key), VEB_maximum(helper.clusters[helper.high(key)])); } } } // Function that returns true if the // key is present in the tree public static bool isMember(Van_Emde_Boas helper, int key) { if (helper.universe_size < key) { return false ; } if (helper.minimum == key || helper.maximum == key) { return true ; } else { // If after attending above condition,if the // size of the tree is 2 then the present key // must be maximum or minimum of the tree if (helper.universe_size == 2) { return false ; } else { return isMember(helper.clusters[helper.high(key)], helper.low(key)); } } } // Driver code public static void Main() { Van_Emde_Boas end = new Van_Emde_Boas(8); // Inserting Keys insert(end, 1); insert(end, 0); insert(end, 2); insert(end, 4); // Before deletion Console.WriteLine(isMember(end,2)); Console.WriteLine(VEB_predecessor(end, 4)+ " " +VEB_successor(end, 1)); // Delete only if the key is present if (isMember(end, 2)) VEB_delete(end, 2); // After deletion Console.WriteLine(isMember(end,2)); Console.WriteLine(VEB_predecessor(end, 4)+ " " +VEB_successor(end, 1)); } } |
Javascript
class Van_Emde_Boas { constructor(size) { this .universe_size = size; this .minimum = -1; this .maximum = -1; this .summary = null ; this .clusters = []; // Function to return cluster numbers this .high = function (x) { const div = Math.ceil(Math.sqrt( this .universe_size)); return Math.floor(x / div); }; // Function to return position of x in cluster this .low = function (x) { const mod = Math.ceil(Math.sqrt( this .universe_size)); return x % mod; }; // Function to return the index from cluster number and position this .generate_index = function (x, y) { const ru = Math.ceil(Math.sqrt( this .universe_size)); return x * ru + y; }; // Base case if (size <= 2) { this .summary = null ; this .clusters = []; } else { const no_clusters = Math.ceil(Math.sqrt(size)); // Assigning VEB(sqrt(u)) to summary this .summary = new Van_Emde_Boas(no_clusters); // Creating an array of VEB Tree pointers of size sqrt(u) for (let i = 0; i < no_clusters; i++) { this .clusters[i] = new Van_Emde_Boas(Math.ceil(Math.sqrt(size))); } } } } // Function to return the minimum value from the tree if it exists function VEB_minimum(helper) { return helper.minimum === -1 ? -1 : helper.minimum; } // Function to return the maximum value from the tree if it exists function VEB_maximum(helper) { return helper.maximum === -1 ? -1 : helper.maximum; } // Function to insert a key in the tree function insert(helper, key) { // If no key is present in the tree then set both minimum and maximum to the key if (helper.minimum === -1) { helper.minimum = key; helper.maximum = key; } else { if (key < helper.minimum) { // Swap the values of key and minimum const temp = key; key = helper.minimum; helper.minimum = temp; } if (helper.universe_size > 2) { if (VEB_minimum(helper.clusters[helper.high(key)]) === -1) { insert(helper.summary, helper.high(key)); helper.clusters[helper.high(key)].minimum = helper.low(key); helper.clusters[helper.high(key)].maximum = helper.low(key); } else { insert(helper.clusters[helper.high(key)], helper.low(key)); } } if (key > helper.maximum) { helper.maximum = key; } } } // Function that returns true if the key is present in the tree function isMember(helper, key) { if (helper.universe_size < key) { return false ; } if (helper.minimum === key || helper.maximum === key) { return true ; } else { if (helper.universe_size === 2) { return false ; } else { return isMember(helper.clusters[helper.high(key)], helper.low(key)); } } } // Function to find the successor of the given key function VEB_successor(helper, key) { if (helper.universe_size === 2) { if (key === 0 && helper.maximum === 1) { return 1; } else { return -1; } } if (helper.minimum !== -1 && key < helper.minimum) { return helper.minimum; } else { const max_incluster = VEB_maximum(helper.clusters[helper.high(key)]); let offset = 0; let succ_cluster = 0; if (max_incluster !== -1 && helper.low(key) < max_incluster) { offset = VEB_successor(helper.clusters[helper.high(key)], helper.low(key)); return helper.generate_index(helper.high(key), offset); } else { succ_cluster = VEB_successor(helper.summary, helper.high(key)); if (succ_cluster === -1) { return -1; } else { offset = VEB_minimum(helper.clusters[succ_cluster]); return helper.generate_index(succ_cluster, offset); } } } } // Function to find the predecessor of the given key function VEB_predecessor(helper, key) { if (helper.universe_size === 2) { if (key === 1 && helper.minimum === 0) { return 0; } else { return -1; } } if (helper.maximum !== -1 && key > helper.maximum) { return helper.maximum; } else { const min_incluster = VEB_minimum(helper.clusters[helper.high(key)]); let offset = 0; let pred_cluster = 0; if (min_incluster !== -1 && helper.low(key) > min_incluster) { offset = VEB_predecessor(helper.clusters[helper.high(key)], helper.low(key)); return helper.generate_index(helper.high(key), offset); } else { pred_cluster = VEB_predecessor(helper.summary, helper.high(key)); if (pred_cluster === -1) { if (helper.minimum !== -1 && key > helper.minimum) { return helper.minimum; } else { return -1; } } else { offset = VEB_maximum(helper.clusters[pred_cluster]); return helper.generate_index(pred_cluster, offset); } } } } // Function to delete a key from the tree function VEB_delete(helper, key) { if (helper.maximum === helper.minimum) { helper.minimum = -1; helper.maximum = -1; } else if (helper.universe_size === 2) { if (key === 0) { helper.minimum = 1; } else { helper.minimum = 0; } helper.maximum = helper.minimum; } else { if (key === helper.minimum) { const first_cluster = VEB_minimum(helper.summary); key = helper.generate_index(first_cluster, VEB_minimum(helper.clusters[first_cluster])); helper.minimum = key; } VEB_delete(helper.clusters[helper.high(key)], helper.low(key)); if (VEB_minimum(helper.clusters[helper.high(key)]) === -1) { VEB_delete(helper.summary, helper.high(key)); if (key === helper.maximum) { const max_insummary = VEB_maximum(helper.summary); if (max_insummary === -1) { helper.maximum = helper.minimum; } else { helper.maximum = helper.generate_index(max_insummary, VEB_maximum(helper.clusters[max_insummary])); } } } else if (key === helper.maximum) { helper.maximum = helper.generate_index(helper.high(key), VEB_maximum(helper.clusters[helper.high(key)])); } } } // Driver code const end = new Van_Emde_Boas(8); // Inserting Keys insert(end, 1); insert(end, 0); insert(end, 2); insert(end, 4); // Before deletion console.log(isMember(end, 2)); console.log(VEB_predecessor(end, 4), VEB_successor(end, 1)); // Delete only if the key is present if (isMember(end, 2)) VEB_delete(end, 2); // After deletion console.log(isMember(end, 2)); console.log(VEB_predecessor(end, 4), VEB_successor(end, 1)); |
1 2 2 0 1 4
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!