Monday, November 18, 2024
Google search engine
HomeData Modelling & AISum of values of all possible non-empty subsets of the given array

Sum of values of all possible non-empty subsets of the given array

Given an array arr[] of N integers, the task is to find the sum of values of all possible non-empty subsets of array the given array.
Examples: 
 

Input: arr[] = {2, 3} 
Output: 10 
All non-empty subsets are {2}, {3} and {2, 3} 
Total sum = 2 + 3 + 2 + 3 = 10
Input: arr[] = {2, 1, 5, 6} 
Output: 112
 

 

Approach: It can be observed that when all the elements are added from all the possible subsets then each element of the original array appears in 2(N – 1) times. Which means contribution of any element arr[i] in the final answer will be arr[i] * 2(N – 1). So, the required answer will be (arr[0] + arr[1] + arr[2] + … + arr[N – 1]) * 2(N – 1).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the required sum
int sum(int arr[], int n)
{
 
    // Find the sum of the array elements
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum += arr[i];
    }
 
    // Every element appears 2^(n-1) times
    sum = sum * pow(2, n - 1);
    return sum;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 1, 5, 6 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << sum(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
    // Function to return the required sum
    static int sum(int arr[], int n)
    {
     
        // Find the sum of the array elements
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
            sum += arr[i];
        }
     
        // Every element appears 2^(n-1) times
        sum = sum * (int)Math.pow(2, n - 1);
        return sum;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 2, 1, 5, 6 };
        int n = arr.length;
        System.out.println(sum(arr, n));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the required sum
def sum( arr, n):
 
    # Find the sum of the array elements
    sum = 0
    for i in arr :
        sum += i
     
    # Every element appears 2^(n-1) times
    sum = sum * pow(2, n - 1)
    return sum
 
# Driver code
arr = [ 2, 1, 5, 6 ]
n = len(arr)
 
print(sum(arr, n))
 
# This code is contributed by Arnab Kundu


C#




// C# implementation of the approach
using System;
class GFG
{
 
    // Function to return the required sum
    static int sum(int[] arr, int n)
    {
     
        // Find the sum of the array elements
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
            sum += arr[i];
        }
     
        // Every element appears 2^(n-1) times
        sum = sum * (int)Math.Pow(2, n - 1);
        return sum;
    }
     
    // Driver code
    public static void Main ()
    {
        int[] arr = { 2, 1, 5, 6 };
        int n = arr.Length;
        Console.WriteLine(sum(arr, n));
    }
}
 
// This code is contributed by CodeMech


Javascript




<script>
// javascript implementation of the approach
 
// Function to return the required sum
function sum(arr, n)
{
 
// Find the sum of the array elements
var sum = 0;
for (i = 0; i < n; i++)
{
sum += arr[i];
}
 
// Every element appears 2^(n-1) times
sum = sum * parseInt(Math.pow(2, n - 1));
return sum;
}
 
// Driver code
 
var arr = [ 2, 1, 5, 6 ];
var n = arr.length;
document.write(sum(arr, n));
 
// This code is contributed by Amit Katiyar
 
</script>


Output: 

112

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments