Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AISum of the first N terms of the series 2,10, 30, 68,….

Sum of the first N terms of the series 2,10, 30, 68,….

Given a number N, the task is to find the sum of first N terms of the below series:
 

Sn = 2 + 10 + 30 + 68 + … upto n terms

Examples: 
 

Input: N = 2
Output: 12
2 + 10
= 12

Input: N = 4 
Output: 40
2 + 10 + 30 + 68
= 110

 

Approach: Let, the nth term be denoted by tn. 
This problem can easily be solved by splitting each term as follows : 
 

Sn = 2 + 10 + 30 + 68 + ......
Sn = (1+1^3) + (2+2^3) + (3+3^3) + (4+4^3) +......
Sn = (1 + 2 + 3 + 4 + ...unto n terms) + (1^3 + 2^3 + 3^3 + 4^3 + ...upto n terms)

We observed that Sn can broken down into summation of two series. 
Hence, the sum of first n terms is given as follows: 
 

Sn = (1 + 2 + 3 + 4 + ...unto n terms) + (1^3 + 2^3 + 3^3 + 4^3 + ...upto n terms)
Sn = n*(n + 1)/2 + (n*(n + 1)/2)^2

Below is the implementation of above approach: 
 

C++




// C++ program to find sum of first n terms
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
int calculateSum(int n)
{
 
    return n * (n + 1) / 2
           + pow((n * (n + 1) / 2), 2);
}
 
// Driver code
int main()
{
    // number of terms to be
    // included in the sum
    int n = 3;
 
    // find the Sum
    cout << "Sum = " << calculateSum(n);
 
    return 0;
}


Java




// Java program to find sum of first n terms
 
public class GFG {
     
    // Function to calculate the sum
    static int calculateSum(int n)
    {
       
        return n * (n + 1) / 2 
               + (int)Math.pow((n * (n + 1) / 2), 2);
    }
     
    // Driver code
    public static void main(String args[])
    {
        // number of terms to be
        // included in the sum
        int n = 3;
       
        // find the Sum
        System.out.println("Sum = "+ calculateSum(n));
    }
    // This Code is contributed by ANKITRAI1
}


Python3




# Python program to find sum
# of first n terms
 
# Function to calculate the sum
def calculateSum(n):
    return (n * (n + 1) // 2 +
        pow((n * (n + 1) // 2), 2))
 
# Driver code
 
# number of terms to be
# included in the sum
n = 3
 
# find the Sum
print("Sum = ", calculateSum(n))
 
# This code is contributed by
# Sanjit_Prasad


C#




// C# program to find sum of first n terms
using System;
class gfg
{
    // Function to calculate the sum
    public void calculateSum(int n)
    {
        double r = (n * (n + 1) / 2 +
                Math.Pow((n * (n + 1) / 2), 2));
        Console.WriteLine("Sum = " + r);
    }
 
    // Driver code
    public static int Main()
    {
        gfg g = new gfg();
 
        // number of terms to be
        // included in the sum
        int n = 3;
         
        // find the Sum
        g.calculateSum(n);
        Console.Read();
        return 0;
    }
}


PHP




<?php
// PHP program to find sum
// of first n terms
 
// Function to calculate the sum
function calculateSum($n)
{
    return $n * ($n + 1) / 2 +
      pow(($n * ($n + 1) / 2), 2);
}
 
// Driver code
 
// number of terms to be
// included in the sum
$n = 3;
 
// find the Sum
echo "Sum = " , calculateSum($n);
 
// This code is contributed
// by anuj_67
?>


Javascript




<script>
 
// Javascript program to find sum of first n terms
 
// Function to calculate the sum
function calculateSum(n)
{
 
    return n * (n + 1) / 2
        + Math.pow((n * (n + 1) / 2), 2);
}
 
// Driver code
 
    // number of terms to be
    // included in the sum
    let n = 3;
 
    // find the Sum
    document.write("Sum = " + calculateSum(n));
 
 
// This code is contributed by Mayank Tyagi
 
</script>


Output: 

Sum = 42

 

Time Complexity: O(1), the code will run in a constant time.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments