We are given the Integer n and also in the next line 2*n integers which represent a Arithmetic Progression series a1, a2, a3…a2n they are in AP. We need to find the sum of a12 – a22 + a32…. + a2n-12 – a2n2 .
Examples :
Input : n = 2 a[] = {1 2 3 4} Output : -10 Explanation : 12 - 22 + 32 42 = -10. Input : n = 3 a[] = {2 4 6 8 10 12} Output : -84
Simple Approach : We one by one find the sum of the square of the series with even terms negative and odd term as positive term .
C++
// CPP program to find sum of // series with alternate signed // square AP sums. #include <bits/stdc++.h> using namespace std; // function to calculate series sum int seriesSum( int n, int a[]) { int res = 0; for ( int i = 0; i < 2 * n; i++) { if (i % 2 == 0) res += a[i] * a[i]; else res -= a[i] * a[i]; } return res; } // Driver Code int main() { int n = 2; int a[] = { 1, 2, 3, 4 }; cout << seriesSum(n, a); return 0; } |
Java
// Java program to find sum of // series with alternate signed // square AP sums. import java.io.*; import java.lang.*; import java.util.*; class GFG { // function to calculate // series sum static int seriesSum( int n, int [] a) { int res = 0 , i; for (i = 0 ; i < 2 * n; i++) { if (i % 2 == 0 ) res += a[i] * a[i]; else res -= a[i] * a[i]; } return res; } // Driver code public static void main(String args[]) { int n = 2 ; int a[] = { 1 , 2 , 3 , 4 }; System.out.println(seriesSum(n, a)); } } |
Python3
# Python3 program to find sum # of series with alternate signed # square AP sums. # Function to calculate series sum def seriesSum(n, a): res = 0 for i in range ( 0 , 2 * n): if (i % 2 = = 0 ): res + = a[i] * a[i] else : res - = a[i] * a[i] return res # Driver code n = 2 a = [ 1 , 2 , 3 , 4 ] print (seriesSum(n, a)) # This code is contributed by Ajit. |
C#
// C# program to find sum of // series with alternate signed // square AP sums. using System; class GFG { // function to calculate // series sum static int seriesSum( int n, int [] a) { int res = 0, i; for (i = 0; i < 2 * n; i++) { if (i % 2 == 0) res += a[i] * a[i]; else res -= a[i] * a[i]; } return res; } // Driver code public static void Main() { int n = 2; int []a = { 1, 2, 3, 4 }; Console.WriteLine(seriesSum(n, a)); } } //This code is contributed by vt_m. |
PHP
<?php // PHP program to find sum of // series with alternate signed // square AP sums. // function to calculate // series sum function seriesSum( $n , $a ) { $res = 0; for ( $i = 0; $i < 2 * $n ; $i ++) { if ( $i % 2 == 0) $res += $a [ $i ] * $a [ $i ]; else $res -= $a [ $i ] * $a [ $i ]; } return $res ; } // Driver Code $n = 2; $a = array (1, 2, 3, 4); echo seriesSum( $n , $a ); // This code is contributed by anuj_67. ?> |
Javascript
<script> // JavaScript program to find sum of // series with alternate signed // function to calculate // series sum function seriesSum(n, a) { let res = 0, i; for (i = 0; i < 2 * n; i++) { if (i % 2 == 0) res += a[i] * a[i]; else res -= a[i] * a[i]; } return res; } // Driver Code let n = 2; let a = [1, 2, 3, 4]; document.write(seriesSum(n, a)); // This code is contributed by code_hunt. </script> |
-10
Time complexity: O(2*n)
Auxiliary Space: O(1) since using constant space for variables
Efficient Approach:Use of Arithmetic progression Application
We know that common difference d = a2 – a1 = a3 – a2 = a4 – a3
Result = a12 – a22 + a32…. + a2n-12 – a2n2
= (a1 – a2)*(a1 + a2) + (a3 – a4)*(a3 +a4)+….+(a2n-1 – a2n)*(a2n-1 + a2n)
So as common difference is common to the series then :
(a1 – a2)[a1 + a2 + a3…a2n]
now we can write :
(-d)*(Sum of the term of the 2n term of AP) (-d)*[((2*n)*(a1 + a2n))/2] now we know that common difference is : d = (a1 - a2) Then the difference between : g = (a2n - a1) So we can conclude that g = d*(2*n - 1) the we can replace d by : g/(2*n - 1) So our result becomes : (n/(2*n - 1)) * (a12 - a2n2)
C++
// Efficient CPP program to // find sum of series with // alternate signed square AP sums. #include <bits/stdc++.h> using namespace std; // function to calculate // series sum int seriesSum( int n, int a[]) { return n * (a[0] * a[0] - a[2 * n - 1] * a[2 * n - 1]) / (2 * n - 1); } // Driver code int main() { int n = 2; int a[] = { 1, 2, 3, 4 }; cout << seriesSum(n, a); return 0; } |
Java
// Efficient Java program to // find sum of series with // alternate signed square AP sums. import java.io.*; import java.lang.*; import java.util.*; class GFG { static int seriesSum( int n, int [] a) { return n * (a[ 0 ] * a[ 0 ] - a[ 2 * n - 1 ] * a[ 2 * n - 1 ]) / ( 2 * n - 1 ); } // Driver Code public static void main(String args[]) { int n = 2 ; int a[] = { 1 , 2 , 3 , 4 }; System.out.println(seriesSum(n, a)); } } |
Python3
# Efficient Python3 program # to find sum of series with # alternate signed square AP sums. # Function to calculate # series sum def seriesSum(n, a): return (n * (a[ 0 ] * a[ 0 ] - a[ 2 * n - 1 ] * a[ 2 * n - 1 ]) / ( 2 * n - 1 )) # Driver code n = 2 a = [ 1 , 2 , 3 , 4 ] print ( int (seriesSum(n, a))) # This code is contributed # by Smitha Dinesh Semwal. |
C#
// Efficient C# program to find sum // of series with alternate signed // square AP sums. using System; class GFG { static int seriesSum( int n, int [] a) { return n * (a[0] * a[0] - a[2 * n - 1] * a[2 * n - 1]) / (2 * n - 1); } // Driver Code public static void Main() { int n = 2; int []a= { 1, 2, 3, 4 }; Console.WriteLine(seriesSum(n, a)); } } // This code is contributed by anuj_67.. |
PHP
<?php // Efficient PHP program to // find sum of series with // alternate signed square AP sums. // function to calculate // series sum function seriesSum( $n , $a ) { return $n * ( $a [0] * $a [0] - $a [2 * $n - 1] * $a [2 * $n - 1]) / (2 * $n - 1); } // Driver code $n = 2; $a = array (1, 2, 3, 4); echo seriesSum( $n , $a ); // This code is contributed by anuj_67.. ?> |
Javascript
<script> // Efficient Javascript program to // find sum of series with // alternate signed square AP sums. // function to calculate // series sum function seriesSum(n, a) { return n * (a[0] * a[0] - a[2 * n - 1] * a[2 * n - 1]) / (2 * n - 1); } // Driver code let n = 2; a = [1, 2, 3, 4]; document.write(seriesSum(n, a)); // This code is contributed by _saurabh_jaiswal. </script> |
-10
Time complexity: O(1) since performing constant operations
Auxiliary Space: O(1) since using constant space for variables
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!