Sunday, November 17, 2024
Google search engine
HomeData Modelling & AISum of product of all elements of sub-arrays of size k

Sum of product of all elements of sub-arrays of size k

Given an array and a number k, the task is to calculate the sum of the product of all elements of subarrays of size k.

Examples : 

Input : arr[] = {1, 2, 3, 4, 5, 6} 
                k = 3
Output : 210
Consider all subarrays of size k
1*2*3 = 6
2*3*4 = 24
3*4*5 = 60
4*5*6 = 120
6 + 24 + 60 + 120 = 210

Input : arr[] = {1, -2, 3, -4, 5, 6} 
            k = 2
Output : -10
Consider all subarrays of size k
1*-2 = -2
-2*3 = -6
3*-4 = -12
-4*5 = -20
5*6  =   30
-2 + -6 + -12 + -20+ 30 = -10

A Naive approach is to generate all subarrays of size k and do the sum of product of all elements of subarrays.  

Implementation:

C++




// C++ program to find the sum of 
// product of all subarrays 
#include <iostream> 
using namespace std; 
  
// Function to calculate the sum of product 
int calcSOP(int arr[], int n, int k) 
    // Initialize sum = 0 
    int sum = 0; 
  
    // Consider every subarray of size k 
    for (int i = 0; i <= n - k; i++) { 
        int prod = 1; 
  
        // Calculate product of all elements 
        // of current subarray 
        for (int j = i; j < k + i; j++) 
            prod *= arr[j]; 
  
        // Store sum of all the products 
        sum += prod; 
    
  
    // Return sum 
    return sum; 
  
// Driver code 
int main() 
    int arr[] = { 1, 2, 3, 4, 5, 6 }; 
    int n = sizeof(arr) / sizeof(arr[0]); 
    int k = 3; 
  
    cout << calcSOP(arr, n, k); 
  
    return 0; 


Java




// Java program to find the sum of
// product of all subarrays
  
class GFG {
    // Method to calculate the sum of product
    static int calcSOP(int arr[], int n, int k)
    {
        // Initialize sum = 0
        int sum = 0;
  
        // Consider every subarray of size k
        for (int i = 0; i <= n - k; i++) {
            int prod = 1;
  
            // Calculate product of all elements
            // of current subarray
            for (int j = i; j < k + i; j++)
                prod *= arr[j];
  
            // Store sum of all the products
            sum += prod;
        }
  
        // Return sum
        return sum;
    }
  
    // Driver method
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 3, 4, 5, 6 };
        int k = 3;
  
        System.out.println(calcSOP(arr, arr.length, k));
    }
}


Python3




# python program to find the sum of
# product of all subarrays
  
# Function to calculate the sum of product
def calcSOP(arr, n, k):
      
    # Initialize sum = 0
    sum = 0
  
    # Consider every subarray of size k
    for i in range(0, (n-k)+1):
        prod = 1
          
        # Calculate product of all elements
        # of current subarray
        for j in range(i, k+i):
            prod = int(prod * arr[j])
  
        # Store sum of all the products
        sum = sum + prod
      
    # Return sum
    return sum
  
#Driver code
arr = [ 1, 2, 3, 4, 5, 6 ]
n = len(arr)
k = 3
print(calcSOP(arr, n, k))
  
# This code is contributed by Sam007


C#




// C# program to find the sum of
// product of all subarrays
using System;
  
public class GFG {
      
    // Method to calculate the sum of product
    static int calcSOP(int[] arr, int n, int k)
    {
        // Initialize sum = 0
        int sum = 0;
  
        // Consider every subarray of size k
        for (int i = 0; i <= n - k; i++) {
            int prod = 1;
  
            // Calculate product of all elements
            // of current subarray
            for (int j = i; j < k + i; j++)
                prod *= arr[j];
  
            // Store sum of all the products
            sum += prod;
        }
  
        // Return sum
        return sum;
    }
  
    // Driver method
    public static void Main()
    {
        int[] arr = {1, 2, 3, 4, 5, 6};
        int k = 3;
  
        Console.WriteLine(calcSOP(arr, arr.Length, k));
    }
}
  
// This code is contributed by Sam007


PHP




<?php
// PHP program to find the sum of
// product of all subarrays
  
// Function to calculate
// the sum of product
function calcSOP($arr, $n, $k)
{
      
    // Initialize sum = 0
    $sum = 0;
  
    // Consider every subarray 
    // of size k
    for ($i = 0; $i <= $n - $k; $i++)
    {
        $prod = 1;
  
        // Calculate product of all 
        // elements of current subarray
        for ($j = $i; $j < $k + $i; $j++)
            $prod *= $arr[$j];
  
        // Store sum of all 
        // the products
        $sum += $prod;
    }
  
    // Return sum
    return $sum;
}
  
    // Driver code
    $arr = array( 1, 2, 3, 4, 5, 6 );
    $n = count($arr);
    $k = 3;
  
    echo calcSOP($arr, $n, $k);
          
// This code is contributed by Sam007
?>


Javascript




<script>
// Javascript program to find the sum of
// product of all subarrays
  
// Function to calculate
// the sum of product
function calcSOP(arr, n, k) {
  
    // Initialize sum = 0
    let sum = 0;
  
    // Consider every subarray 
    // of size k
    for (let i = 0; i <= n - k; i++) {
        let prod = 1;
  
        // Calculate product of all 
        // elements of current subarray
        for (let j = i; j < k + i; j++)
            prod *= arr[j];
  
        // Store sum of all 
        // the products
        sum += prod;
    }
  
    // Return sum
    return sum;
}
  
// Driver code
let arr = new Array(1, 2, 3, 4, 5, 6);
let n = arr.length;
let k = 3;
  
document.write(calcSOP(arr, n, k));
  
// This code is contributed by gfgking
</script>


Output

210

Time Complexity: O(nk)

An Efficient Method is to use the concept of Sliding Window.

1- Consider first subarray/window of size k, do the product of elements and add to the total_sum. 

 for (i=0; i < k; i++)
       prod = prod * arr[i];

2- Now, By Using sliding window concept, remove first element of window from the product and add next element to the window. i.e. 

for (i =k ; i < n; i++)
 {
     // Removing first element from product  
     prod = prod / arr[i-k]; 

     //  Adding current element to the product
     prod = prod * arr[i];  
     sum += prod;
 }

3- Return sum 

C++




// C++ program to find the sum of 
// product of all subarrays 
#include <iostream> 
using namespace std; 
  
    // Method to calculate the sum of product
    int calcSOP(int arr[], int n, int k)
    {
        // Initialize sum = 0 and prod = 1
        int sum = 0, prod = 1;
  
        // Consider first subarray of size k
        // Store the products of elements
        for (int i = 0; i < k; i++)
            prod *= arr[i];
  
        // Add the product to the sum
        sum += prod;
  
        // Consider every subarray of size k
        // Remove first element and add current
        // element to the window
        for (int i = k; i < n; i++) {
  
            // Divide by the first element
            // of previous subarray/ window
            // and product with the current element
            prod = (prod / arr[i - k]) * arr[i];
  
            // Add current product to the sum
            sum += prod;
        }
  
        // Return sum
        return sum;
    }
  
  
// Driver code 
int main() 
    int arr[] = { 1, 2, 3, 4, 5, 6 };
    int n = sizeof(arr) / sizeof(arr[0]); 
    int k = 3;
  
    cout << calcSOP(arr, n, k);
    return 0; 
  
// This code is contributed by avijitmondal1998.


Java




// Java program to find the sum of
// product of all subarrays
  
class GFG {
    // Method to calculate the sum of product
    static int calcSOP(int arr[], int n, int k)
    {
        // Initialize sum = 0 and prod = 1
        int sum = 0, prod = 1;
  
        // Consider first subarray of size k
        // Store the products of elements
        for (int i = 0; i < k; i++)
            prod *= arr[i];
  
        // Add the product to the sum
        sum += prod;
  
        // Consider every subarray of size k
        // Remove first element and add current
        // element to the window
        for (int i = k; i < n; i++) {
  
            // Divide by the first element
            // of previous subarray/ window
            // and product with the current element
            prod = (prod / arr[i - k]) * arr[i];
  
            // Add current product to the sum
            sum += prod;
        }
  
        // Return sum
        return sum;
    }
  
    // Driver method
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 3, 4, 5, 6 };
        int k = 3;
  
        System.out.println(calcSOP(arr, arr.length, k));
    }
}


Python3




# Python3 program to find the sum of
# product of all subarrays
  
# Function to calculate the sum of product
def calcSOP(arr, n, k):
      
    # Initialize sum = 0 and prod = 1
    sum = 0
    prod = 1
  
    # Consider first subarray of size k
    # Store the products of elements
    for i in range(k):
        prod *= arr[i]
  
    # Add the product to the sum
    sum += prod
  
    # Consider every subarray of size k
    # Remove first element and add current
    # element to the window
    for i in range(k, n, 1):
          
        # Divide by the first element of
        #  previous subarray/ window and 
        # product with the current element
        prod = (prod / arr[i - k]) * arr[i]
  
        # Add current product to the sum
        sum += prod
  
    # Return sum
    return int(sum)
  
# Drivers code
arr = [1, 2, 3, 4, 5, 6]
n = len(arr)
k = 3
  
print(calcSOP(arr, n, k))
  
# This code is contributed 29AjayKumar


C#




// C# program to find the sum of
// product of all subarrays
using System;
  
public class GFG {
      
    // Method to calculate the sum of product
    static int calcSOP(int[] arr, int n, int k)
    {
        // Initialize sum = 0 and prod = 1
        int sum = 0, prod = 1;
  
        // Consider first subarray of size k
        // Store the products of elements
        for (int i = 0; i < k; i++)
            prod *= arr[i];
  
        // Add the product to the sum
        sum += prod;
  
        // Consider every subarray of size k
        // Remove first element and add current
        // element to the window
        for (int i = k; i < n; i++) {
  
            // Divide by the first element
            // of previous subarray/ window
            // and product with the current element
            prod = (prod / arr[i - k]) * arr[i];
  
            // Add current product to the sum
            sum += prod;
        }
  
        // Return sum
        return sum;
    }
  
    // Driver method
    public static void Main()
    {
        int[] arr = { 1, 2, 3, 4, 5, 6 };
        int k = 3;
          
        // Function calling
        Console.WriteLine(calcSOP(arr, arr.Length, k));
    }
}
  
// This code is contributed by Sam007


PHP




<?php
  
// php program to find the sum of
// product of all subarrays
  
// Function to calculate the sum of product
function calcSOP($arr, $n, $k)
{
    // Initialize sum = 0 and prod = 1
    $sum = 0;
    $prod = 1;
   
    // Consider first subarray of size k
    // Store the products of elements
    for ($i = 0; $i < $k; $i++)
        $prod *= $arr[$i];
   
    // Add the product to the sum
    $sum += $prod;
   
    // Consider every subarray of size k
    // Remove first element and add current
    // element to the window
    for ($i = $k; $i < $n; $i++) {
   
        // Divide by the first element
        // of previous subarray/ window
        // and product with the current element
        $prod = ($prod / $arr[$i - $k]) * $arr[$i];
   
        // Add current product to the sum
        $sum += $prod;
    }
   
    // Return sum
    return $sum;
}
   
// Drivers code
    $arr = array( 1, 2, 3, 4, 5, 6 );
    $n = count($arr);
    $k = 3;
   
    echo calcSOP($arr, $n, $k);
   
// This code is contributed by Sam007
?>


Javascript




<script>
        // JavaScript program for the above approach
  
function calcSOP(arr,n,k)
    {
        // Initialize sum = 0 and prod = 1
        let sum = 0, prod = 1;
  
        // Consider first subarray of size k
        // Store the products of elements
        for (let i = 0; i < k; i++)
            prod *= arr[i];
  
        // Add the product to the sum
        sum += prod;
  
        // Consider every subarray of size k
        // Remove first element and add current
        // element to the window
        for (let i = k; i < n; i++) {
  
            // Divide by the first element
            // of previous subarray/ window
            // and product with the current element
            prod = (Math.floor(prod / arr[i - k])) * arr[i];
  
            // Add current product to the sum
            sum += prod;
        }
  
        // Return sum
        return sum;
    }
  
    // Driver method
     
        let arr= [1, 2, 3, 4, 5, 6 ];
        let k = 3;
  
        document.write(calcSOP(arr, arr.length, k));
     
  
    // This code is contributed by Potta Lokesh
  
    </script>


Output

210

Time Complexity: O(n)

This article is contributed by Sahil Chhabra. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments