Saturday, November 16, 2024
Google search engine
HomeData Modelling & AISum of Fibonacci Numbers with alternate negatives

Sum of Fibonacci Numbers with alternate negatives

Given a positive integer n, the task is to find the value of F1 – F2 + F3 -……….+ (-1)n+1Fn where Fi denotes i-th Fibonacci number.
Fibonacci Numbers: The Fibonacci numbers are the numbers in the following integer sequence.
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ….

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation 
 

Fn = Fn-1 + Fn-2

with seed values F0 = 0 and F1 = 1.
Examples 
 

Input: n = 5
Output: 4
Explanation: 1 - 1 + 2 - 3 + 5 = 4

Input: n = 8
Output: -12
Explanation: 1 - 1 + 2 - 3 + 5 - 8 + 13 - 21 =  -12

Method 1: (O(n) time Complexity) This method includes solving the problem directly by finding all Fibonacci numbers till n and adding up the alternating sum. But this will require O(n) time complexity.
Below is the implementation of the above approach: 
 

C++




// C++ Program to find alternate sum
// of Fibonacci numbers
 
#include <bits/stdc++.h>
using namespace std;
 
// Computes value of first fibonacci numbers
// and stores their alternate sum
int calculateAlternateSum(int n)
{
    if (n <= 0)
        return 0;
 
    int fibo[n + 1];
    fibo[0] = 0, fibo[1] = 1;
 
    // Initialize result
    int sum = pow(fibo[0], 2) + pow(fibo[1], 2);
 
    // Add remaining terms
    for (int i = 2; i <= n; i++) {
        fibo[i] = fibo[i - 1] + fibo[i - 2];
 
        // For even terms
        if (i % 2 == 0)
            sum -= fibo[i];
 
        // For odd terms
        else
            sum += fibo[i];
    }
 
    // Return the alternating sum
    return sum;
}
 
// Driver program to test above function
int main()
{
 
    // Get n
    int n = 8;
 
    // Find the alternating sum
    cout << "Alternating Fibonacci Sum upto "
         << n << " terms: "
         << calculateAlternateSum(n) << endl;
 
    return 0;
}


Java




// Java Program to find alternate sum
// of Fibonacci numbers
 
public class GFG {
     
    //Computes value of first fibonacci numbers
    // and stores their alternate sum
    static double calculateAlternateSum(int n)
    {
        if (n <= 0)
            return 0;
       
        int fibo[] = new int [n + 1];
        fibo[0] = 0;
        fibo[1] = 1;
       
        // Initialize result
        double sum = Math.pow(fibo[0], 2) + Math.pow(fibo[1], 2);
       
        // Add remaining terms
        for (int i = 2; i <= n; i++) {
            fibo[i] = fibo[i - 1] + fibo[i - 2];
       
            // For even terms
            if (i % 2 == 0)
                sum -= fibo[i];
       
            // For odd terms
            else
                sum += fibo[i];
        }
       
        // Return the alternating sum
        return sum;
    }
       
     
    // Driver code
    public static void main(String args[])
    {
        // Get n
        int n = 8;
       
        // Find the alternating sum
        System.out.println("Alternating Fibonacci Sum upto "
              + n + " terms: "
              + calculateAlternateSum(n));
       
    }
    // This Code is contributed by ANKITRAI1
}


Python 3




# Python 3 Program to find alternate sum
# of Fibonacci numbers
 
# Computes value of first fibonacci numbers
# and stores their alternate sum
def calculateAlternateSum(n):
 
    if (n <= 0):
        return 0
 
    fibo = [0]*(n + 1)
    fibo[0] = 0
    fibo[1] = 1
 
    # Initialize result
    sum = pow(fibo[0], 2) + pow(fibo[1], 2)
 
    # Add remaining terms
    for i in range(2, n+1) :
        fibo[i] = fibo[i - 1] + fibo[i - 2]
 
        # For even terms
        if (i % 2 == 0):
            sum -= fibo[i]
 
        # For odd terms
        else:
            sum += fibo[i]
 
    # Return the alternating sum
    return sum
 
# Driver program to test above function
if __name__ == "__main__":
    # Get n
    n = 8
 
    # Find the alternating sum
    print( "Alternating Fibonacci Sum upto "
        , n ," terms: "
        , calculateAlternateSum(n))
 
# this code is contributed by
# ChitraNayal


C#




// C# Program to find alternate sum
// of Fibonacci numbers
using System;
 
class GFG
{
 
// Computes value of first fibonacci numbers
// and stores their alternate sum
static double calculateAlternateSum(int n)
{
    if (n <= 0)
        return 0;
 
    int []fibo = new int [n + 1];
    fibo[0] = 0;
    fibo[1] = 1;
 
    // Initialize result
    double sum = Math.Pow(fibo[0], 2) +
                 Math.Pow(fibo[1], 2);
 
    // Add remaining terms
    for (int i = 2; i <= n; i++)
    {
        fibo[i] = fibo[i - 1] + fibo[i - 2];
 
        // For even terms
        if (i % 2 == 0)
            sum -= fibo[i];
 
        // For odd terms
        else
            sum += fibo[i];
    }
 
    // Return the alternating sum
    return sum;
}
 
// Driver code
public static void Main()
{
    // Get n
    int n = 8;
 
    // Find the alternating sum
    Console.WriteLine("Alternating Fibonacci Sum upto " +
              n + " terms: " + calculateAlternateSum(n));
 
}
}
 
// This code is contributed by inder_verma


PHP




<?php
// PHP Program to find alternate sum
// of Fibonacci numbers
 
// Computes value of first fibonacci
// numbers and stores their alternate sum
function calculateAlternateSum($n)
{
    if ($n <= 0)
        return 0;
 
    $fibo = array();
    $fibo[0] = 0;
    $fibo[1] = 1;
 
    // Initialize result
    $sum = pow($fibo[0], 2) +
           pow($fibo[1], 2);
 
    // Add remaining terms
    for ($i = 2; $i <= $n; $i++)
    {
        $fibo[$i] = $fibo[$i - 1] +
                    $fibo[$i - 2];
 
        // For even terms
        if ($i % 2 == 0)
            $sum -= $fibo[$i];
 
        // For odd terms
        else
            $sum += $fibo[$i];
    }
 
    // Return the alternating sum
    return $sum;
}
 
// Driver Code
 
// Get n
$n = 8;
 
// Find the alternating sum
echo ("Alternating Fibonacci Sum upto ");
echo $n ;
echo " terms: ";
echo (calculateAlternateSum($n)) ;
 
// This code isw contributed
// by Shivi_Aggarwal
?>


Javascript




<script>
 
// Javascript Program to find alternate sum
// of Fibonacci numbers
 
 
    // Computes value of first fibonacci numbers
    // and stores their alternate sum
    function calculateAlternateSum(n)
    {
        if (n <= 0)
            return 0;
 
        var fibo = Array(n + 1).fill(0);
        fibo[0] = 0;
        fibo[1] = 1;
 
        // Initialize result
        var sum = Math.pow(fibo[0], 2) +
        Math.pow(fibo[1], 2);
 
        // Add remaining terms
        for (i = 2; i <= n; i++) {
            fibo[i] = fibo[i - 1] + fibo[i - 2];
 
            // For even terms
            if (i % 2 == 0)
                sum -= fibo[i];
 
            // For odd terms
            else
                sum += fibo[i];
        }
 
        // Return the alternating sum
        return sum;
    }
 
    // Driver code
     
        // Get n
        var n = 8;
 
        // Find the alternating sum
        document.write(
        "Alternating Fibonacci Sum upto " + n +" terms: "
        + calculateAlternateSum(n)
        );
 
 
// This code contributed by gauravrajput1
 
</script>


Output: 

Alternating Fibonacci Sum upto 8 terms: -12

 

Time Complexity: O(n)

Auxiliary Space: O(n)

Method 2: (O(log n) Complexity) This method involves the following observation to reduce the time complexity:
 

  • For n = 2, 
    F1 – F2 = 1 – 1 
    = 0 
    = 1 + (-1)3 * F1
  • For n = 3, 
    F1 – F2 + F3 
    = 1 – 1 + 2 
    = 2 
    = 1 + (-1)4 * F2
  • For n = 4, 
    F1 – F2 + F3 – F4 
    = 1 – 1 + 2 – 3 
    = -1 
    = 1 + (-1)5 * F3
  • For n = m, 
    F1 – F2 + F3 -…….+ (-1)m+1 * Fm-1 
    = 1 + (-1)m+1Fm-1
    Assuming this to be true. Now if (n = m+1) is also true, it means that the assumption is correct. Otherwise, it is wrong.
  • For n = m+1, 
    F1 – F2 + F3 -…….+ (-1)m+1 * Fm + (-1)m+2 * Fm+1 
    = 1 + (-1)m+1 * Fm-1 + (-1)m+2 * Fm+1 
    = 1 + (-1)m+1(Fm-1 – Fm+1
    = 1 + (-1)m+1(-Fm) = 1 + (-1)m+2(Fm)
    which is true as per the assumption for n = m. 
     

Hence the general term for the alternating Fibonacci Sum:
 

F1 – F2 + F3 -…….+ (-1)n+1 Fn = 1 + (-1)n+1Fn-1

So in order to find an alternate sum, only the n-th Fibonacci term is to be found, which can be done in O(log n) time( Refer to Method 5 or 6 of this article.)
Below is the implementation of method 6 of this: 
 

C++




// C++ Program to find alternate  Fibonacci Sum in
// O(Log n) time.
 
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 1000;
 
// Create an array for memoization
int f[MAX] = { 0 };
 
// Returns n'th Fibonacci number
// using table f[]
int fib(int n)
{
    // Base cases
    if (n == 0)
        return 0;
    if (n == 1 || n == 2)
        return (f[n] = 1);
 
    // If fib(n) is already computed
    if (f[n])
        return f[n];
 
    int k = (n & 1) ? (n + 1) / 2 : n / 2;
 
    // Applying above formula [Note value n&1 is 1
    // if n is odd, else 0].
    f[n] = (n & 1) ? (fib(k) * fib(k) + fib(k - 1) * fib(k - 1))
                   : (2 * fib(k - 1) + fib(k)) * fib(k);
 
    return f[n];
}
 
// Computes value of Alternate  Fibonacci Sum
int calculateAlternateSum(int n)
{
    if (n % 2 == 0)
        return (1 - fib(n - 1));
    else
        return (1 + fib(n - 1));
}
 
// Driver program to test above function
int main()
{
    // Get n
    int n = 8;
 
    // Find the alternating sum
    cout << "Alternating Fibonacci Sum upto "
         << n << " terms  : "
         << calculateAlternateSum(n) << endl;
 
    return 0;
}


Java




// Java Program to find alternate
// Fibonacci Sum in O(Log n) time.
class GFG {
 
    static final int MAX = 1000;
 
    // Create an array for memoization
    static int f[] = new int[MAX];
 
    // Returns n'th Fibonacci number
    // using table f[]
    static int fib(int n) {
         
        // Base cases
        if (n == 0) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return (f[n] = 1);
        }
 
        // If fib(n) is already computed
        if (f[n] > 0) {
            return f[n];
        }
 
        int k = (n % 2 == 1) ? (n + 1) / 2 : n / 2;
 
        // Applying above formula [Note value n&1 is 1
        // if n is odd, else 0].
        f[n] = (n % 2 == 1) ? (fib(k) * fib(k) + fib(k - 1) * fib(k - 1))
                : (2 * fib(k - 1) + fib(k)) * fib(k);
 
        return f[n];
    }
 
    // Computes value of Alternate Fibonacci Sum
    static int calculateAlternateSum(int n) {
        if (n % 2 == 0) {
            return (1 - fib(n - 1));
        } else {
            return (1 + fib(n - 1));
        }
    }
 
// Driver program to test above function
    public static void main(String[] args) {
        // Get n
        int n = 8;
 
        // Find the alternating sum
        System.out.println("Alternating Fibonacci Sum upto "
                + n + " terms : "
                + calculateAlternateSum(n));
    }
}
// This code is contributed by PrinciRaj1992


Python3




# Python3 program to find alternative
# Fibonacci Sum in O(Log n) time.
MAX = 1000
 
# List for memorization
f = [0] * MAX
 
# Returns n'th fibonacci number
# using table f[]
def fib(n):
 
    # Base Cases
    if(n == 0):
        return(0)
         
    if(n == 1 or n == 2):
        f[n] = 1
        return(f[n])
 
    # If fib(n) is already computed
    if(f[n]):
        return(f[n])
 
    if(n & 1):
        k = (n + 1) // 2
    else:
        k = n // 2
 
    # Applying above formula [Note value n&1 is 1
    # if n is odd, else 0]
    if(n & 1):
        f[n] = (fib(k) * fib(k) +
                fib(k - 1) * fib(k - 1))
    else:
        f[n] = (2 * fib(k-1) + fib(k)) * fib(k)
 
    return(f[n])
 
# Computes value of Alternate Fibonacci Sum
def cal(n):
     
    if(n % 2 == 0):
        return(1 - fib(n - 1))
    else:
        return(1 + fib(n - 1))
     
# Driver Code
if(__name__=="__main__"):
     
    n = 8
    print("Alternating Fibonacci Sum upto",
           n, "terms :", cal(n))
 
# This code is contributed by arjunsaini9081


C#




// C# Program to find alternate
// Fibonacci Sum in O(Log n) time.
using System;
 
class GFG
{
    static readonly int MAX = 1000;
 
    // Create an array for memoization
    static int []f = new int[MAX];
 
    // Returns n'th Fibonacci number
    // using table f[]
    static int fib(int n)
    {
        // Base cases
        if (n == 0)
        {
            return 0;
        }
        if (n == 1 || n == 2)
        {
            return (f[n] = 1);
        }
 
        // If fib(n) is already computed
        if (f[n] > 0)
        {
            return f[n];
        }
 
        int k = (n % 2 == 1) ? (n + 1) / 2 : n / 2;
 
        // Applying above formula [Note value n&1 is 1
        // if n is odd, else 0].
        f[n] = (n % 2 == 1) ? (fib(k) * fib(k) +
                        fib(k - 1) * fib(k - 1))
                        : (2 * fib(k - 1) + fib(k)) * fib(k);
 
        return f[n];
    }
 
    // Computes value of Alternate Fibonacci Sum
    static int calculateAlternateSum(int n)
    {
        if (n % 2 == 0)
        {
            return (1 - fib(n - 1));
        } else
        {
            return (1 + fib(n - 1));
        }
    }
 
    // Driver code
    public static void Main()
    {
        // Get n
        int n = 8;
         
        // Find the alternating sum
        Console.WriteLine("Alternating Fibonacci Sum upto "
                + n + " terms : "
                + calculateAlternateSum(n));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 //Javascript implementation of the approach
MAX = 1000;
 
// Create an array for memoization
f = new Array(MAX);
f.fill(0);
// Returns n'th Fibonacci number
// using table f[]
function fib( n)
{
    // Base cases
    if (n == 0)
        return 0;
    if (n == 1 || n == 2)
        return (f[n] = 1);
 
    // If fib(n) is already computed
    if (f[n])
        return f[n];
 
    var k = (n & 1) ? (n + 1) / 2 : n / 2;
 
    // Applying above formula [Note value n&1 is 1
    // if n is odd, else 0].
    f[n] = (n & 1) ? (fib(k) * fib(k) + fib(k - 1) * fib(k - 1))
                   : (2 * fib(k - 1) + fib(k)) * fib(k);
 
    return f[n];
}
// Computes value of Alternate  Fibonacci Sum
function calculateAlternateSum(n)
{
    if (n % 2 == 0)
        return (1 - fib(n - 1));
    else
        return (1 + fib(n - 1));
}
 
 
// Get n
var n = 8;
// Find the alternating sum
document.write( "Alternating Fibonacci Sum upto "+ n + " terms  : "
         + calculateAlternateSum(n) + "<br>");
 
getElement(a, n, S);
 
// This code is contributed by SoumikMondal
</script>


Output: 

Alternating Fibonacci Sum upto 8 terms: -12

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments