Monday, November 18, 2024
Google search engine
HomeData Modelling & AISum of digits with even number of 1’s in their binary representation

Sum of digits with even number of 1’s in their binary representation

Given an array arr[] of size N. The task is to find the sum of the digits of all array elements which contains even number of 1’s in it’s their binary representation.
Examples: 
 

Input : arr[] = {4, 9, 15} 
Output : 15 
4 = 10, it contains odd number of 1’s 
9 = 1001, it contains even number of 1’s 
15 = 1111, it contains even number of 1’s 
Total Sum = Sum of digits of 9 and 15 = 9 + 1 + 5 = 15
Input : arr[] = {7, 23, 5} 
Output :10 
 

 

Approach : 
The number of 1’s in the binary representation of each array element is counted and if it is even then the sum of its digits is calculated.
Below is the implementation of the above approach: 
 

C++




// CPP program to find Sum of digits with even
// number of 1’s in their binary representation
#include <bits/stdc++.h>
using namespace std;
 
// Function to count and check the
// number of 1's is even or odd
int countOne(int n)
{
    int count = 0;
    while (n) {
        n = n & (n - 1);
        count++;
    }
 
    if (count % 2 == 0)
        return 1;
    else
        return 0;
}
 
// Function to calculate the sum
// of the digits of a number
int sumDigits(int n)
{
    int sum = 0;
    while (n != 0) {
        sum += n % 10;
        n /= 10;
    }
 
    return sum;
}
 
// Driver Code
int main()
{
    int arr[] = { 4, 9, 15 };
     
    int n = sizeof(arr) / sizeof(arr[0]);
    int total_sum = 0;
 
    // Iterate through the array
    for (int i = 0; i < n; i++) {
        if (countOne(arr[i]))
            total_sum += sumDigits(arr[i]);
    }
 
    cout << total_sum << '\n';
     
    return 0;
}


Java




// Java program to find Sum of digits with even
// number of 1's in their binary representation
import java.util.*;
 
class GFG
{
 
// Function to count and check the
// number of 1's is even or odd
static int countOne(int n)
{
    int count = 0;
    while (n > 0)
    {
        n = n & (n - 1);
        count++;
    }
 
    if (count % 2 == 0)
        return 1;
    else
        return 0;
}
 
// Function to calculate the sum
// of the digits of a number
static int sumDigits(int n)
{
    int sum = 0;
    while (n != 0)
    {
        sum += n % 10;
        n /= 10;
    }
 
    return sum;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 4, 9, 15 };
     
    int n = arr.length;
    int total_sum = 0;
 
    // Iterate through the array
    for (int i = 0; i < n; i++)
    {
        if (countOne(arr[i]) == 1)
            total_sum += sumDigits(arr[i]);
    }
    System.out.println(total_sum);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to find Sum of digits with even
# number of 1’s in their binary representation
 
# Function to count and check the
# number of 1's is even or odd
def countOne(n):
    count = 0
    while (n):
        n = n & (n - 1)
        count += 1
 
    if (count % 2 == 0):
        return 1
    else:
        return 0
 
# Function to calculate the summ
# of the digits of a number
def summDigits(n):
    summ = 0
    while (n != 0):
        summ += n % 10
        n //= 10
 
    return summ
 
# Driver Code
arr = [4, 9, 15]
 
n = len(arr)
total_summ = 0
 
# Iterate through the array
for i in range(n):
    if (countOne(arr[i])):
        total_summ += summDigits(arr[i])
 
print(total_summ )
 
# This code is contributed by Mohit Kumar


C#




// C# program to find Sum of digits with even
// number of 1's in their binary representation
using System;
 
class GFG
{
 
// Function to count and check the
// number of 1's is even or odd
static int countOne(int n)
{
    int count = 0;
    while (n > 0)
    {
        n = n & (n - 1);
        count++;
    }
 
    if (count % 2 == 0)
        return 1;
    else
        return 0;
}
 
// Function to calculate the sum
// of the digits of a number
static int sumDigits(int n)
{
    int sum = 0;
    while (n != 0)
    {
        sum += n % 10;
        n /= 10;
    }
    return sum;
}
 
// Driver Code
public static void Main()
{
    int[] arr = { 4, 9, 15 };
     
    int n = arr.Length;
    int total_sum = 0;
 
    // Iterate through the array
    for (int i = 0; i < n; i++)
    {
        if (countOne(arr[i]) == 1)
            total_sum += sumDigits(arr[i]);
    }
    Console.WriteLine(total_sum);
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
    // Javascript program to find Sum of digits with even 
    // number of 1’s in their binary representation
     
    // Function to count and check the 
    // number of 1's is even or odd
    function countOne(n)
    {
        let count = 0;
        while (n) {
            n = n & (n - 1);
            count++;
        }
 
        if (count % 2 == 0)
            return 1;
        else
            return 0;
    }
 
    // Function to calculate the sum 
    // of the digits of a number
    function sumDigits(n)
    {
        let sum = 0;
        while (n != 0) {
            sum += n % 10;
            n = parseInt(n / 10, 10);
        }
 
        return sum;
    }
     
    let arr = [ 4, 9, 15 ];
       
    let n = arr.length;
    let total_sum = 0;
   
    // Iterate through the array
    for (let i = 0; i < n; i++) {
        if (countOne(arr[i]))
            total_sum += sumDigits(arr[i]);
    }
   
    document.write(total_sum);
 
</script>


Output: 

15

 

Approach#2: Using bin()

Traverse the array and check the binary representation of each element. If the count of 1’s in the binary representation of an element is even, add the sum of its digits to the answer variable. Return the answer variable.

Algorithm

1. Start with an answer variable set to 0.
2. Traverse the given array.
3. For each number in the array, convert it to binary using the in-built bin() function and remove the 0b prefix from the binary representation using the string slice binary[2:].
4. Count the number of ones in the binary representation of the current number using the string method count().
5. If the count of ones is even, add the sum of the digits of the current number to the answer variable using the sum() and map() functions.
6. Return the final answer variable.

Python3




def sum_of_digits_with_even_ones(arr):
    ans = 0
    for num in arr:
        binary = bin(num)[2:]
        count_ones = binary.count('1')
        if count_ones % 2 == 0:
            ans += sum(map(int, str(num)))
    return ans
arr = [4, 9, 15]
print(sum_of_digits_with_even_ones(arr))


Output

15

Time complexity: O(N*M), where N is the length of the array and M is the maximum number of bits in any element of the array.
Space complexity: O(1).

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments