Sunday, November 17, 2024
Google search engine
HomeData Modelling & AISum of all differences between Maximum and Minimum of increasing Subarrays

Sum of all differences between Maximum and Minimum of increasing Subarrays

Given an array arr[] consisting of N integers, the task is to find the sum of the differences between maximum and minimum element of all strictly increasing subarrays from the given array. All subarrays need to be in their longest possible form, i.e. if a subarray [i, j] form a strictly increasing subarray, then it should be considered as a whole and not [i, k] and [k+1, j] for some i <= k <= j.

A subarray is said to be strictly increasing if for every ith index in the subarray, except the last index, arr[i+1] > arr[i] 
 

Examples:  

Input: arr[ ] = {7, 1, 5, 3, 6, 4} 
Output:
Explanation: 
All possible increasing subarrays are {7}, {1, 5}, {3, 6} and {4} 
Therefore, sum = (7 – 7) + (5 – 1) + (6 – 3) + (4 – 4) = 7

Input: arr[ ] = {1, 2, 3, 4, 5, 2} 
Output:
Explanation: 
All possible increasing subarrays are {1, 2, 3, 4, 5} and {2} 
Therefore, sum = (5 – 1) + (2 – 2) = 4 
 

Approach: 
Follow the steps below to solve the problem:  

  • Traverse the array and for each iteration, find the rightmost element up to which the current subarray is strictly increasing.
  • Let i be the starting element of the current subarray, and j index up to which the current subarray is strictly increasing. The maximum and minimum values of this subarray will be arr[j] and arr[i] respectively. So, add (arr[j] – arr[i]) to the sum.
  • Continue iterating for the next subarray from (j+1)th index.
  • After complete traversal of the array, print the final value of sum.

Below is the implementation of the above approach: 

C++




// C++ Program to find the sum of
// differences of maximum and minimum
// of strictly increasing subarrays
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate and return the
// sum of differences of maximum and
// minimum of strictly increasing subarrays
int sum_of_differences(int arr[], int N)
{
 
    // Stores the sum
    int sum = 0;
 
    int i, j, flag;
 
    // Traverse the array
    for (i = 0; i < N - 1; i++) {
 
        if (arr[i] < arr[i + 1]) {
            flag = 0;
 
            for (j = i + 1; j < N - 1; j++) {
 
                // If last element of the
                // increasing sub-array is found
                if (arr[j] >= arr[j + 1]) {
 
                    // Update sum
                    sum += (arr[j] - arr[i]);
 
                    i = j;
 
                    flag = 1;
 
                    break;
                }
            }
 
            // If the last element of the array
            // is reached
            if (flag == 0 && arr[i] < arr[N - 1]) {
 
                // Update sum
                sum += (arr[N - 1] - arr[i]);
 
                break;
            }
        }
    }
 
    // Return the sum
    return sum;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 6, 1, 2, 5, 3, 4 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << sum_of_differences(arr, N);
 
    return 0;
}


Java




// Java program to find the sum of
// differences of maximum and minimum
// of strictly increasing subarrays
class GFG{
 
// Function to calculate and return the
// sum of differences of maximum and
// minimum of strictly increasing subarrays
static int sum_of_differences(int arr[], int N)
{
     
    // Stores the sum
    int sum = 0;
 
    int i, j, flag;
 
    // Traverse the array
    for(i = 0; i < N - 1; i++)
    {
        if (arr[i] < arr[i + 1])
        {
            flag = 0;
 
            for(j = i + 1; j < N - 1; j++)
            {
 
                // If last element of the
                // increasing sub-array is found
                if (arr[j] >= arr[j + 1])
                {
 
                    // Update sum
                    sum += (arr[j] - arr[i]);
                    i = j;
                    flag = 1;
                     
                    break;
                }
            }
 
            // If the last element of the array
            // is reached
            if (flag == 0 && arr[i] < arr[N - 1])
            {
 
                // Update sum
                sum += (arr[N - 1] - arr[i]);
 
                break;
            }
        }
    }
 
    // Return the sum
    return sum;
}
 
// Driver Code
public static void main (String []args)
{
    int arr[] = { 6, 1, 2, 5, 3, 4 };
 
    int N = arr.length;
 
    System.out.print(sum_of_differences(arr, N));
}
}
 
// This code is contributed by chitranayal


Python3




# Python3 program to find the sum of
# differences of maximum and minimum
# of strictly increasing subarrays
 
# Function to calculate and return the
# sum of differences of maximum and
# minimum of strictly increasing subarrays
def sum_of_differences(arr, N):
 
    # Stores the sum
    sum = 0
 
    # Traverse the array
    i = 0
    while(i < N - 1):
         
        if arr[i] < arr[i + 1]:
            flag = 0
             
            for j in range(i + 1, N - 1):
                 
                # If last element of the
                # increasing sub-array is found
                if arr[j] >= arr[j + 1]:
 
                    # Update sum
                    sum += (arr[j] - arr[i])
                    i = j
                    flag = 1
                     
                    break
 
            # If the last element of the array
            # is reached
            if flag == 0 and arr[i] < arr[N - 1]:
 
                # Update sum
                sum += (arr[N - 1] - arr[i])
                break
                 
        i += 1
 
    # Return the sum
    return sum
     
# Driver Code
arr = [ 6, 1, 2, 5, 3, 4 ]
 
N = len(arr)
 
print(sum_of_differences(arr, N))
 
# This code is contributed by yatinagg


C#




// C# program to find the sum of
// differences of maximum and minimum
// of strictly increasing subarrays
using System;
class GFG{
  
// Function to calculate and return the
// sum of differences of maximum and
// minimum of strictly increasing subarrays
static int sum_of_differences(int []arr, int N)
{
      
    // Stores the sum
    int sum = 0;
  
    int i, j, flag;
  
    // Traverse the array
    for(i = 0; i < N - 1; i++)
    {
        if (arr[i] < arr[i + 1])
        {
            flag = 0;
  
            for(j = i + 1; j < N - 1; j++)
            {
  
                // If last element of the
                // increasing sub-array is found
                if (arr[j] >= arr[j + 1])
                {
  
                    // Update sum
                    sum += (arr[j] - arr[i]);
                    i = j;
                    flag = 1;
                      
                    break;
                }
            }
  
            // If the last element of the array
            // is reached
            if (flag == 0 && arr[i] < arr[N - 1])
            {
  
                // Update sum
                sum += (arr[N - 1] - arr[i]);
  
                break;
            }
        }
    }
  
    // Return the sum
    return sum;
}
  
// Driver Code
public static void Main (string []args)
{
    int []arr = { 6, 1, 2, 5, 3, 4 };
  
    int N = arr.Length;
  
    Console.Write(sum_of_differences(arr, N));
}
}
  
// This code is contributed by rock_cool


Javascript




<script>
 
// Javascript program to find the sum of
// differences of maximum and minimum
// of strictly increasing subarrays
 
// Function to calculate and return the
// sum of differences of maximum and
// minimum of strictly increasing subarrays
function sum_of_differences(arr, N)
{
     
    // Stores the sum
    let sum = 0;
 
    let i, j, flag;
 
    // Traverse the array
    for(i = 0; i < N - 1; i++)
    {
        if (arr[i] < arr[i + 1])
        {
            flag = 0;
 
            for(j = i + 1; j < N - 1; j++)
            {
                 
                // If last element of the
                // increasing sub-array is found
                if (arr[j] >= arr[j + 1])
                {
                     
                    // Update sum
                    sum += (arr[j] - arr[i]);
                    i = j;
                    flag = 1;
                    break;
                }
            }
 
            // If the last element of the array
            // is reached
            if (flag == 0 && arr[i] < arr[N - 1])
            {
                 
                // Update sum
                sum += (arr[N - 1] - arr[i]);
 
                break;
            }
        }
    }
 
    // Return the sum
    return sum;
}
 
// Driver code
let arr = [ 6, 1, 2, 5, 3, 4 ];
 
let N = arr.length;
 
document.write(sum_of_differences(arr, N));
 
// This code is contributed by divyesh072019
 
</script>


Output: 

5

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Two pointers in Python:

Approach:

We can use two pointers to optimize the dynamic programming approach further. We can maintain two pointers i and j such that i points to the start of the increasing subarray and j points to the end of the increasing subarray. We can initialize both pointers to 0 and then move j to the right until we find a non-increasing element. Then we can update the difference and move i to the right until we find a non-decreasing element

  • Initialize i and j to 0 and diff to 0.
  • While j is less than n, do the following:
  • While j is less than n-1 and the current element arr[j] is less than the next element arr[j+1], increment j.
  • Calculate the difference between the maximum and minimum values in the current increasing subarray (arr[j] – arr[i]) and add it to diff.
  • Set i and j to j+1.
  • Return diff.

Python3




def max_min_diff(arr):
    n = len(arr)
    i, j = 0, 0
    diff = 0
    while j < n:
        while j < n-1 and arr[j] < arr[j+1]:
            j += 1
        diff += arr[j] - arr[i]
        i = j = j + 1
    return diff
 
 
# Test the function with the given inputs
arr1 = [7, 1, 5, 3, 6, 4]
arr2 = [1, 2, 3, 4, 5, 2]
 
print(max_min_diff(arr1))  # Output: 7
print(max_min_diff(arr2))  # Output: 4


Output

7
4

The time complexity of this approach is O(n)
 the space complexity is O(1) as we are not using any extra space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments