Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AISum of absolute differences of pairs from the given array that satisfy...

Sum of absolute differences of pairs from the given array that satisfy the given condition

Given an array arr[] of N elements, the task is to find the sum of absolute differences between all pairs (arr[i], arr[j]) such that i < j and (j – i) is prime.
Example: 
 

Input: arr[] = {1, 2, 3, 5, 7, 12} 
Output: 45 
All valid index pairs are: 
(5, 0) -> abs(12 – 1) = 11 
(3, 0) -> abs(5 – 1) = 4 
(2, 0) -> abs(3 – 1) = 2 
(4, 1) -> abs(7 – 2) = 5 
(3, 1) -> abs(5 – 2) = 3 
(5, 2) -> abs(12 – 3) = 9 
(4, 2) -> abs(7 – 3) = 4 
(5, 3) -> abs(12 – 5) = 7 
11 + 4 + 2 + 5 + 3 + 9 + 4 + 7 = 45
Input: arr[] = {2, 5, 6, 7} 
Output: 11 
 

 

Approach: Initialise sum = 0 and run two nested loops and for every pair arr[i], arr[j] is (j – i) is prime then update the sum as sum = sum + abs(arr[i], arr[j]). Print the sum in the end.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function that returns true
// if n is prime
bool isPrime(int n)
{
 
    // Corner case
    if (n <= 1)
        return false;
 
    // Check from 2 to n-1
    for (int i = 2; i < n; i++)
        if (n % i == 0)
            return false;
 
    return true;
}
 
// Function to return the absolute
// differences of the pairs which
// satisfy the given condition
int findSum(int arr[], int n)
{
 
    // To store the required sum
    int sum = 0;
 
    for (int i = 0; i < n - 1; i++) {
        for (int j = i + 1; j < n; j++)
 
            // If difference between the indices
            // is prime
            if (isPrime(j - i)) {
 
                // Update the sum with the absolute
                // difference of the pair elements
                sum = sum + abs(arr[i] - arr[j]);
            }
    }
 
    // Return the sum
    return sum;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 5, 7, 12 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findSum(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
    // Function that returns true
    // if n is prime
    static boolean isPrime(int n)
    {
 
        // Corner case
        if (n <= 1)
        {
            return false;
        }
 
        // Check from 2 to n-1
        for (int i = 2; i < n; i++)
        {
            if (n % i == 0)
            {
                return false;
            }
        }
        return true;
    }
 
    // Function to return the absolute
    // differences of the pairs which
    // satisfy the given condition
    static int findSum(int arr[], int n)
    {
 
        // To store the required sum
        int sum = 0;
 
        for (int i = 0; i < n - 1; i++)
        {
            // If difference between the indices is prime
            for (int j = i + 1; j < n; j++)
            {
                if (isPrime(j - i))
                {
 
                    // Update the sum with the absolute
                    // difference of the pair elements
                    sum = sum + Math.abs(arr[i] - arr[j]);
                }
            }
        }
 
        // Return the sum
        return sum;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = {1, 2, 3, 5, 7, 12};
        int n = arr.length;
 
        System.out.println(findSum(arr, n));
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
 
# Function that returns true
# if n is prime
def isPrime(n) :
 
    # Corner case
    if (n <= 1) :
        return False;
 
    # Check from 2 to n-1
    for i in range(2, n) :
        if (n % i == 0) :
            return False;
 
    return True;
 
# Function to return the absolute
# differences of the pairs which
# satisfy the given condition
def findSum(arr, n) :
 
    # To store the required sum
    sum = 0;
 
    for i in range(n - 1) :
        for j in range(i + 1, n) :
 
            # If difference between the indices
            # is prime
            if (isPrime(j - i)) :
 
                # Update the sum with the absolute
                # difference of the pair elements
                sum = sum + abs(arr[i] - arr[j]);
 
    # Return the sum
    return sum;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 2, 3, 5, 7, 12 ];
    n = len(arr);
 
    print(findSum(arr, n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function that returns true
    // if n is prime
    static bool isPrime(int n)
    {
 
        // Corner case
        if (n <= 1)
        {
            return false;
        }
 
        // Check from 2 to n-1
        for (int i = 2; i < n; i++)
        {
            if (n % i == 0)
            {
                return false;
            }
        }
        return true;
    }
 
    // Function to return the absolute
    // differences of the pairs which
    // satisfy the given condition
    static int findSum(int []arr, int n)
    {
 
        // To store the required sum
        int sum = 0;
 
        for (int i = 0; i < n - 1; i++)
        {
            // If difference between the indices is prime
            for (int j = i + 1; j < n; j++)
            {
                if (isPrime(j - i))
                {
 
                    // Update the sum with the absolute
                    // difference of the pair elements
                    sum = sum + Math.Abs(arr[i] - arr[j]);
                }
            }
        }
 
        // Return the sum
        return sum;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int []arr = {1, 2, 3, 5, 7, 12};
        int n = arr.Length;
 
        Console.WriteLine(findSum(arr, n));
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// JS implementation of the approach
 
// Function that returns true
// if n is prime
function isPrime(n)
{
 
    // Corner case
    if (n <= 1)
        return false;
 
    // Check from 2 to n-1
    for (let i = 2; i < n; i++)
        if (n % i == 0)
            return false;
 
    return true;
}
 
// Function to return the absolute
// differences of the pairs which
// satisfy the given condition
function findSum( arr, n)
{
 
    // To store the required sum
    let sum = 0;
 
    for (let i = 0; i < n - 1; i++) {
        for (let j = i + 1; j < n; j++)
 
            // If difference between the indices
            // is prime
            if (isPrime(j - i)) {
 
                // Update the sum with the absolute
                // difference of the pair elements
                sum = sum + Math.abs(arr[i] - arr[j]);
            }
    }
 
    // Return the sum
    return sum;
}
 
// Driver code
let arr = [ 1, 2, 3, 5, 7, 12 ];
let n = arr.length;
document.write(findSum(arr, n));
</script>


Output

45

Time Complexity: O(N3)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments