Given an array[] of N positive integers and M queries. Each query consists of two integers L and R represented by a range. For each query, find the count of numbers that lie in the given range which can be expressed as the sum of any subset of given array.
Prerequisite : Subset Sum Queries using Bitset
Examples:
Input : arr[] = { 1, 2, 2, 3, 5 }, M = 4 L = 1, R = 2 L = 1, R = 5 L = 3, R = 6 L = 9, R = 30
Output : 2 5 4 5
Explanation : For the first query, in range [1, 2] all numbers i.e. 1 and 2 can be expressed as a subset sum, 1 as 1, 2 as 2. For the second query, in range [1, 5] all numbers i.e. 1, 2, 3, 4 and 5 can be expressed as subset sum, 1 as 1, 2 as 2, 3 as 3, 4 as 2 + 2 or 1 + 3, 5 as 5. For the third query, in range [3, 6], all numbers i.e. 3, 4, 5 and 6 can be expressed as subset sum. For the last query, only numbers 9, 10, 11, 12, 13 can be expressed as subset sum, 9 as 5 + 2 + 2, 10 as 5 + 2 + 2 + 1, 11 as 5 + 3 + 2 + 1, 12 as 5 + 3 + 2 + 2 and 13 as 5 + 3 + 2 + 2 + 1.
Approach: The idea is to use a bitset and iterate over the array to represent all possible subset sums. The current state of bitset is defined by ORing it with the previous state of bitset left shifted X times where X is the current element processed in the array. To answer the queries in O(1) time, we can precompute the count of numbers upto every number and for a range [L, R], the answer would be pre[R] – pre[L – 1], where pre[] is the precomputed array.
Below is the implementation of the above approach.
C++
// CPP Program to answer subset // sum queries in a given range #include <bits/stdc++.h> using namespace std; const int MAX = 1001; bitset<MAX> bit; // precomputation array int pre[MAX]; // structure to represent query struct que { int L, R; }; void answerQueries( int Q, que Queries[], int N, int arr[]) { // Setting bit at 0th position as 1 bit[0] = 1; for ( int i = 0; i < N; i++) bit |= (bit << arr[i]); // Precompute the array for ( int i = 1; i < MAX; i++) pre[i] = pre[i - 1] + bit[i]; // Answer Queries for ( int i = 0; i < Q; i++) { int l = Queries[i].L; int r = Queries[i].R; cout << pre[r] - pre[l - 1] << endl; } } // Driver Code to test above function int main() { int arr[] = { 1, 2, 2, 3, 5 }; int N = sizeof (arr) / sizeof (arr[0]); int M = 4; que Queries[M]; Queries[0].L = 1, Queries[0].R = 2; Queries[1].L = 1, Queries[1].R = 5; Queries[2].L = 3, Queries[2].R = 6; Queries[3].L = 9, Queries[3].R = 30; answerQueries(M, Queries, N, arr); return 0; } |
Java
import java.util.Arrays; // Class to represent query class Que { int L, R; Que( int L, int R) { this .L = L; this .R = R; } } public class Main { private static final int MAX = 1001 ; private static boolean [] bit = new boolean [MAX]; // Precomputation array private static int [] pre = new int [MAX]; public static void answerQueries( int Q, Que[] Queries, int N, int [] arr) { // Setting bit at 0th position as 1 bit[ 0 ] = true ; for ( int i = 0 ; i < N; i++) { for ( int j = MAX - 1 ; j >= arr[i]; j--) { bit[j] |= bit[j - arr[i]]; } } // Precompute the array for ( int i = 1 ; i < MAX; i++) { pre[i] = pre[i - 1 ] + (bit[i] ? 1 : 0 ); } // Answer Queries for ( int i = 0 ; i < Q; i++) { int l = Queries[i].L; int r = Queries[i].R; System.out.println(pre[r] - pre[l - 1 ]); } } // Driver Code to test above function public static void main(String[] args) { int [] arr = { 1 , 2 , 2 , 3 , 5 }; int N = arr.length; int M = 4 ; Que[] Queries = { new Que( 1 , 2 ), new Que( 1 , 5 ), new Que( 3 , 6 ), new Que( 9 , 30 )}; answerQueries(M, Queries, N, arr); } } |
Python3
from typing import List MAX = 1001 bit = [ 0 ] * MAX # precomputation array pre = [ 0 ] * MAX # structure to represent query class Que: def __init__( self , L, R): self .L = L self .R = R def answerQueries(Q: int , Queries: List [Que], N: int , arr: List [ int ]) - > None : global bit, pre # Setting bit at 0th position as 1 bit[ 0 ] = 1 for i in range (N): bit = [b or (bit[j - arr[i]] if j - arr[i] > = 0 else 0 ) for j, b in enumerate (bit)] # Precompute the array for i in range ( 1 , MAX ): pre[i] = pre[i - 1 ] + bit[i] # Answer Queries for i in range (Q): l = Queries[i].L r = Queries[i].R print (pre[r] - pre[l - 1 ]) # Driver Code to test above function if __name__ = = "__main__" : arr = [ 1 , 2 , 2 , 3 , 5 ] N = len (arr) M = 4 Queries = [Que( 1 , 2 ), Que( 1 , 5 ), Que( 3 , 6 ), Que( 9 , 30 )] answerQueries(M, Queries, N, arr) |
C#
using System; public class GFG { private const int MAX = 1001; private static bool [] bit = new bool [MAX]; // Precomputation array private static int [] pre = new int [MAX]; // Class to represent query public class Que { public int L, R; public Que( int L, int R) { this .L = L; this .R = R; } } public static void answerQueries( int Q, Que[] Queries, int N, int [] arr) { // Setting bit at 0th position as 1 bit[0] = true ; for ( int i = 0; i < N; i++) { for ( int j = MAX - 1; j >= arr[i]; j--) { bit[j] |= bit[j - arr[i]]; } } // Precompute the array for ( int i = 1; i < MAX; i++) { pre[i] = pre[i - 1] + (bit[i] ? 1 : 0); } // Answer Queries for ( int i = 0; i < Q; i++) { int l = Queries[i].L; int r = Queries[i].R; Console.WriteLine(pre[r] - pre[l - 1]); } } // Driver Code to test above function public static void Main(String[] args) { int [] arr = { 1, 2, 2, 3, 5 }; int N = arr.Length; int M = 4; Que[] Queries = { new Que(1, 2), new Que(1, 5), new Que(3, 6), new Que(9, 30) }; answerQueries(M, Queries, N, arr); } } |
Javascript
// JavaScript Program to answer subset // sum queries in a given range const MAX = 1001; let bit = Array(MAX).fill(0); // precomputation array let pre = Array(MAX).fill(0); // class to represent query class Que { constructor(L, R) { this .L = L; this .R = R; } } function answerQueries(Q, Queries, N, arr) { // Setting bit at 0th position as 1 bit[0] = 1; for (let i = 0; i < N; i++) { for (let j = MAX - 1; j >= arr[i]; j--) { bit[j] |= bit[j - arr[i]]; } } // Precompute the array for (let i = 1; i < MAX; i++) { pre[i] = pre[i - 1] + bit[i]; } // Answer Queries for (let i = 0; i < Q; i++) { let l = Queries[i].L; let r = Queries[i].R; console.log(pre[r] - pre[l - 1]); } } // Driver Code to test above function let arr = [1, 2, 2, 3, 5]; let N = arr.length; let M = 4; let Queries = [ new Que(1, 2), new Que(1, 5), new Que(3, 6), new Que(9, 30)]; answerQueries(M, Queries, N, arr); |
2 5 4 5
Time Complexity: Each query can be answered in O(1) time and precomputation requires O(MAX) time.
Auxiliary Space: O(MAX)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!