Monday, November 18, 2024
Google search engine
HomeData Modelling & AISmallest String consisting of a String S exactly K times as a...

Smallest String consisting of a String S exactly K times as a Substring

Given a string S of length N and integer K, find the smallest length string which contains the string S as a sub string exactly K times.

Examples:

Input: S = “abba”, K = 3 
Output: abbabbabba 
Explanation: The string “abba” occurs K times in the string abbabbabba, i.e. {abbabbabba, abbabbabba, abbabbabba

Input: S = “neveropen”, K = 3 
Output: “neveropenforneveropen”

Approach: To optimize the above approach, find the Longest Proper Prefix which is also a suffix for the given string S, and then generate a substring of S excluding the longest common prefix and add this substring to the answer exactly K – 1 times to the original string. Follow the below steps to solve the problem:

  • Find the length of the longest proper prefix using KMP algorithm.
  • Append substring S.substring(N-lps[N-1]) to S, exactly K-1 times.
  • Print the answer.

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// KMP algorithm
int* kmp(string& s)
{
 
    int n = s.size();
    int* lps = new int[n];
 
    lps[0] = 0;
    int i = 1, len = 0;
    while (i < n) {
 
        if (s[i] == s[len]) {
            len++;
            lps[i] = len;
            i++;
        }
        else {
            if (len != 0) {
                len = lps[len - 1];
            }
            else {
                lps[i] = 0;
                i++;
            }
        }
    }
 
    return lps;
}
 
// Function to return the required string
string findString(string& s, int k)
{
 
    int n = s.length();
 
    // Finding the longest proper prefix
    // which is also suffix
    int* lps = kmp(s);
 
    // ans string
    string ans = "";
 
    string suff
        = s.substr(0, n - lps[n - 1]);
 
    for (int i = 0; i < k - 1; ++i) {
 
        // Update ans appending the
        // substring K - 1 times
        ans += suff;
    }
 
    // Append the original string
    ans += s;
 
    // Returning min length string
    // which contain exactly k
    // substring of given string
    return ans;
}
 
// Driver Code
int main()
{
 
    int k = 3;
 
    string s = "neveropen";
 
    cout << findString(s, k) << endl;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
     
// KMP algorithm
static int[] kmp(String s)
{
    int n = s.length();
    int[] lps = new int[n];
    lps[0] = 0;
 
    int i = 1, len = 0;
     
    while (i < n)
    {
        if (s.charAt(i) == s.charAt(len))
        {
            len++;
            lps[i] = len;
            i++;
        }
        else
        {
            if (len != 0)
            {
                len = lps[len - 1];
            }
            else
            {
                lps[i] = 0;
                i++;
            }
        }
    }
    return lps;
}
 
// Function to return the required string
static String findString(String s, int k)
{
    int n = s.length();
 
    // Finding the longest proper prefix
    // which is also suffix
    int[] lps = kmp(s);
 
    // ans string
    String ans = "";
 
    String suff = s.substring(0, n - lps[n - 1]);
 
    for(int i = 0; i < k - 1; ++i)
    {
         
        // Update ans appending the
        // substring K - 1 times
        ans += suff;
    }
 
    // Append the original string
    ans += s;
 
    // Returning min length string
    // which contain exactly k
    // substring of given string
    return ans;
}
 
// Driver code
public static void main (String[] args)
{
    int k = 3;
     
    String s = "neveropen";
     
    System.out.println(findString(s, k));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program to implement
# the above approach
 
# KMP algorithm
def kmp(s):
     
    n = len(s)
    lps = [None] * n
    lps[0] = 0
 
    i, Len = 1, 0
     
    while (i < n):
     
        if (s[i] == s[Len]):
            Len += 1
            lps[i] = Len
            i += 1
             
        else:
            if (Len != 0):
                Len = lps[Len - 1]
            else:
                lps[i] = 0
                i += 1
                 
    return lps
     
# Function to return the required string
def findString(s, k):
 
    n = len(s)
 
    # Finding the longest proper prefix
    # which is also suffix
    lps = kmp(s)
 
    # ans string
    ans = ""
     
    suff = s[0: n - lps[n - 1] : 1]
 
    for i in range(k - 1):
         
        # Update ans appending the
        # substring K - 1 times
        ans += suff
 
    # Append the original string
    ans += s
 
    # Returning min length string
    # which contain exactly k
    # substring of given string
    return ans
 
# Driver code
k = 3
     
s = "neveropen"
     
print(findString(s, k))
 
# This code is contributed by divyeshrabadiya07


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
     
// KMP algorithm
static int[] kmp(string s)
{
    int n = s.Length;
    int[] lps = new int[n];
    lps[0] = 0;
 
    int i = 1, len = 0;
     
    while (i < n)
    {
        if (s[i] == s[len])
        {
            len++;
            lps[i] = len;
            i++;
        }
        else
        {
            if (len != 0)
            {
                len = lps[len - 1];
            }
            else
            {
                lps[i] = 0;
                i++;
            }
        }
    }
    return lps;
}
 
// Function to return the required string
static string findString(string s, int k)
{
    int n = s.Length;
 
    // Finding the longest proper prefix
    // which is also suffix
    int[] lps = kmp(s);
 
    // ans string
    string ans = "";
 
    string suff = s.Substring(0,
                            n - lps[n - 1]);
 
    for(int i = 0; i < k - 1; ++i)
    {
         
        // Update ans appending the
        // substring K - 1 times
        ans += suff;
    }
 
    // Append the original string
    ans += s;
 
    // Returning min length string
    // which contain exactly k
    // substring of given string
    return ans;
}
 
// Driver code
public static void Main (string[] args)
{
    int k = 3;
     
    string s = "neveropen";
     
    Console.Write(findString(s, k));
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
// JavaScript Program to implement
// the above approach
 
// KMP algorithm
function kmp(s)
{
 
    var n = s.length;
    var lps = new Array(n);
 
    lps[0] = 0;
    var i = 1;
    var len = 0;
    while (i < n) {
 
        if (s[i] == s[len]) {
            len++;
            lps[i] = len;
            i++;
        }
        else {
            if (len != 0) {
                len = lps[len - 1];
            }
            else {
                lps[i] = 0;
                i++;
            }
        }
    }
 
    return lps;
}
 
// Function to return the required string
function findString(s, k)
{
 
    var n = s.length;
 
    // Finding the longest proper prefix
    // which is also suffix
    var lps = kmp(s);
 
    // ans string
    var ans = "";
 
    var suff = s.substr(0, n - lps[n - 1]);
 
    for (var i = 0; i < k - 1; ++i) {
 
        // Update ans appending the
        // substring K - 1 times
        ans += suff;
    }
 
    // Append the original string
    ans += s;
 
    // Returning min length string
    // which contain exactly k
    // substring of given string
    return ans;
}
 
// Driver Code
var k = 3;
 
var s = "neveropen";
 
document.write(findString(s, k));
 
//This code is contributed by phasing17
</script>


Output

neveropenforneveropen

 Time Complexity: O( |S| ), where S is the given string
Auxiliary Space: O( |S| )

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments