You are given an integer n, find the smallest positive integer root of equation x, or else print -1 if no roots are found.
Equation: x^2 + s(x)*x – n = 0
where x, n are positive integers, s(x) is the function, equal to the sum of digits of number x in the decimal number system.
1 <= N <= 10^18
Examples:
Input: N = 110 Output: 10 Explanation: x = 10 is the minimum root. As s(10) = 1 + 0 = 1 and 102 + 1*10 - 110=0. Input: N = 4 Output: -1 Explanation: there are no roots of the equation possible
A naive approach will be to iterate through all the possible values of X and find out if any such root exists but this won’t be possible as the value of n is very large.
An efficient approach will be as follows
Firstly let’s find the interval of possible values of s(x). Hence x^2 <= N and N <= 10^18, x <= 109. In other words, for every considerable solution x the decimal length of x does not extend 10 digits. So Smax = s(9999999999) = 10*9 = 90.
Let’s brute force the value of s(x) (0 <= s(x) <= 90). Now we have an ordinary square equation. The deal is to solve the equation and to check that the current brute forced value of s(x) is equal to sum of digits of the solution. If the solution exists and the equality holds, we should get the answer and store the minimum of the roots possible.
Below is the implementation of the above approach
C++
// CPP program to find smallest value of root // of an equation under given constraints. #include <bits/stdc++.h> using namespace std; // function to check if the sum of digits is // equal to the summation assumed bool check( long long a, long long b) { long long int c = 0; // calculate the sum of digit while (a != 0) { c = c + a % 10; a = a / 10; } return (c == b); } // function to find the largest root possible. long long root( long long n) { bool found = 0; long long mx = 1e18; // iterate for all possible sum of digits. for ( long long i = 0; i <= 90; i++) { // check if discriminant is a perfect square. long long s = i * i + 4 * n; long long sq = sqrt (s); // check if discriminant is a perfect square and // if it as perfect root of the equation if (sq * sq == s && check((sq - i) / 2, i)) { found = 1; mx = min(mx, (sq - i) / 2); } } // function returns answer if (found) return mx; else return -1; } // driver program to check the above function int main() { long long n = 110; cout << root(n); } |
Java
// Java program to find smallest value of root // of an equation under given constraints. class GFG{ // function to check if the sum of digits is // equal to the summation assumed static boolean check( long a, long b) { long c = 0 ; // calculate the sum of digit while (a != 0 ) { c = c + a % 10 ; a = a / 10 ; } return (c == b); } // function to find the largest root possible. static long root( long n) { boolean found = false ; long mx = ( long )1E18; // iterate for all possible sum of digits. for ( long i = 0 ; i <= 90 ; i++) { // check if discriminant is a perfect square. long s = i * i + 4 * n; long sq = ( long )Math.sqrt(s); // check if discriminant is a perfect square and // if it as perfect root of the equation if (sq * sq == s && check((sq - i) / 2 , i)) { found = true ; mx = Math.min(mx, (sq - i) / 2 ); } } // function returns answer if (found) return mx; else return - 1 ; } // driver program to check the above function public static void main(String[] args) { long n = 110 ; System.out.println(root(n)); } } // This code is contributed by mits |
Python3
# Python3 program to find smallest # value of root of an equation # under given constraints. import math # function to check if the sum # of digits is equal to the # summation assumed def check(a, b): c = 0 ; # calculate the # sum of digit while (a ! = 0 ): c = c + a % 10 ; a = int (a / 10 ); return True if (c = = b) else False ; # function to find the # largest root possible. def root(n): found = False ; # float(1E+18) mx = 1000000000000000001 ; # iterate for all # possible sum of digits. for i in range ( 91 ): # check if discriminant # is a perfect square. s = i * i + 4 * n; sq = int (math.sqrt(s)); # check if discriminant is # a perfect square and # if it as perfect root # of the equation if (sq * sq = = s and check( int ((sq - i) / 2 ), i)): found = True ; mx = min (mx, int ((sq - i) / 2 )); # function returns answer if (found): return mx; else : return - 1 ; # Driver Code n = 110 ; print (root(n)); # This code is contributed by mits |
C#
//C# program to find smallest value of root // of an equation under given constraints. using System; public class GFG{ // function to check if the sum of digits is // equal to the summation assumed static bool check( long a, long b) { long c = 0; // calculate the sum of digit while (a != 0) { c = c + a % 10; a = a / 10; } return (c == b); } // function to find the largest root possible. static long root( long n) { bool found = false ; long mx = ( long )1E18; // iterate for all possible sum of digits. for ( long i = 0; i <= 90; i++) { // check if discriminant is a perfect square. long s = i * i + 4 * n; long sq = ( long )Math.Sqrt(s); // check if discriminant is a perfect square and // if it as perfect root of the equation if (sq * sq == s && check((sq - i) / 2, i)) { found = true ; mx = Math.Min(mx, (sq - i) / 2); } } // function returns answer if (found) return mx; else return -1; } // driver program to check the above function public static void Main() { long n = 110; Console.Write(root(n)); } } // This code is contributed by Raput-Ji |
PHP
<?php // PHP program to find // smallest value of root // of an equation under // given constraints. // function to check if // the sum of digits is // equal to the summation // assumed function check( $a , $b ) { $c = 0; // calculate the // sum of digit while ( $a != 0) { $c = $c + $a % 10; $a = (int)( $a / 10); } return ( $c == $b ) ? true : false; } // function to find the // largest root possible. function root( $n ) { $found = false; // float(1E+18) $mx = 1000000000000000001; // iterate for all // possible sum of digits. for ( $i = 0; $i <= 90; $i ++) { // check if discriminant // is a perfect square. $s = $i * $i + 4 * $n ; $sq = (int)(sqrt( $s )); // check if discriminant is // a perfect square and // if it as perfect root // of the equation if ( $sq * $sq == $s && check((int)(( $sq - $i ) / 2), $i )) { $found = true; $mx = min( $mx , (int)(( $sq - $i ) / 2)); } } // function returns answer if ( $found ) return $mx ; else return -1; } // Driver Code $n = 110; echo root( $n ); // This code is contributed by mits ?> |
Javascript
<script> // Javascript program to find smallest // value of root of an equation under // given constraints. // Function to check if the sum of digits is // equal to the summation assumed function check(a, b) { var c = 0; // Calculate the sum of digit while (a != 0) { c = c + a % 10; a = parseInt(a / 10); } return (c == b); } // Function to find the largest root possible. function root(n) { var found = false ; var mx = 1E18; // Iterate for all possible // sum of digits. for (i = 0; i <= 90; i++) { // Check if discriminant is a // perfect square. var s = i * i + 4 * n; var sq = Math.sqrt(s); // Check if discriminant is a // perfect square and if it as // perfect root of the equation if (sq * sq == s && check((sq - i) / 2, i)) { found = true ; mx = Math.min(mx, (sq - i) / 2); } } // Function returns answer if (found) return mx; else return -1; } // Driver code var n = 110; document.write(root(n)); // This code is contributed by todaysgaurav </script> |
Output:
10
Time Complexity: O(90*log(sqrt(N))), as we are using nested loops to traverse 90*log(sqrt(N)) times.
Auxiliary Space: O(1), as we are not using any extra space.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!