Given a positive integers N, the task is to find the smallest N digit number divisible by N.
Examples:
Input: N = 2
Output: 10
Explanation:
10 is the smallest 2-digit number which is divisible by 2.Input: N = 3
Output: 102
Explanation:
102 is the smallest 3-digit number which is divisible by 3.
Naive Approach: The naive approach is to iterate from smallest N-digit number(say S) to largest N-digit number(say L). The first number between [S, L] divisible by N is the required result.
Below is the implementation of above approach:
C++
// C++ program for the above approach #include <iostream> #include <math.h> using namespace std; // Function to find the smallest // N-digit number divisible by N void smallestNumber( int N) { // Find largest n digit number int L = pow (10, N) - 1; // Find smallest n digit number int S = pow (10, N - 1); for ( int i = S; i <= L; i++) { // If i is divisible by N, // then print i and return ; if (i % N == 0) { cout << i; return ; } } } // Driver Code int main() { // Given Number int N = 2; // Function Call smallestNumber(N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the smallest // N-digit number divisible by N static void smallestNumber( int N) { // Find largest n digit number int L = ( int ) (Math.pow( 10 , N) - 1 ); // Find smallest n digit number int S = ( int ) Math.pow( 10 , N - 1 ); for ( int i = S; i <= L; i++) { // If i is divisible by N, // then print i and return ; if (i % N == 0 ) { System.out.print(i); return ; } } } // Driver Code public static void main(String[] args) { // Given Number int N = 2 ; // Function Call smallestNumber(N); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach # Function to find the smallest # N-digit number divisible by N def smallestNumber(N): # Find largest n digit number L = pow ( 10 , N) - 1 ; # Find smallest n digit number S = pow ( 10 , N - 1 ); for i in range (S, L): # If i is divisible by N, # then print i and return ; if (i % N = = 0 ): print (i); return ; # Driver Code if __name__ = = "__main__" : # Given number N = 2 ; # Function call smallestNumber(N) # This code is contributed by rock_cool |
C#
// C# program for the above approach using System; class GFG{ // Function to find the smallest // N-digit number divisible by N static void smallestNumber( int N) { // Find largest n digit number int L = ( int )(Math.Pow(10, N) - 1); // Find smallest n digit number int S = ( int )Math.Pow(10, N - 1); for ( int i = S; i <= L; i++) { // If i is divisible by N, // then print i and return ; if (i % N == 0) { Console.Write(i); return ; } } } // Driver Code public static void Main() { // Given number int N = 2; // Function call smallestNumber(N); } } // This code is contributed by Nidhi_biet |
Javascript
<script> // Javascript program for the above approach // Function to find the smallest // N-digit number divisible by N function smallestNumber(N) { // Find largest n digit number let L = Math.pow(10, N) - 1; // Find smallest n digit number let S = Math.pow(10, N - 1); for (let i = S; i <= L; i++) { // If i is divisible by N, // then print i and return ; if (i % N == 0) { document.write(i); return ; } } } // Driver code // Given Number let N = 2; // Function Call smallestNumber(N); // This code is contributed by divyeshrabadiya07 </script> |
10
Time Complexity: O(L – S), where L and S is the largest and smallest N-digit number respectively.
Auxiliary Space: O(1)
Efficient Approach: If the number divisible by N, then the number will be of the form N * X for some positive integer X.
Since it has to be smallest N-digit number, then X will be given by:
. Therefore, the smallest number N-digit number is given by:
For Example:
For N = 3, the smallest 3-digit number is given by:
=>=>
=>
=> 102
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <iostream> #include <math.h> using namespace std; // Function to find the smallest // N-digit number divisible by N int smallestNumber( int N) { // Return the smallest N-digit // number calculated using above // formula return N * ceil ( pow (10, (N - 1)) / N); } // Driver Code int main() { // Given N int N = 2; // Function Call cout << smallestNumber(N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the smallest // N-digit number divisible by N static int smallestNumber( int N) { // Return the smallest N-digit // number calculated using above // formula return ( int ) (N * Math.ceil(Math.pow( 10 , (N - 1 )) / N)); } // Driver Code public static void main(String[] args) { // Given N int N = 2 ; // Function Call System.out.print(smallestNumber(N)); } } // This code is contributed by Princi Singh |
Python3
# Python3 program for the above approach import math # Function to find the smallest # N-digit number divisible by N def smallestNumber(N): # Return the smallest N-digit # number calculated using above # formula return N * math.ceil( pow ( 10 , (N - 1 )) / / N); # Driver Code # Given N N = 2 ; # Function Call print (smallestNumber(N)); # This code is contributed by Code_Mech |
C#
// C# program for the above approach using System; class GFG{ // Function to find the smallest // N-digit number divisible by N static int smallestNumber( int N) { // Return the smallest N-digit // number calculated using above // formula return ( int ) (N * Math.Ceiling(Math.Pow(10, (N - 1)) / N)); } // Driver Code public static void Main() { // Given N int N = 2; // Function Call Console.Write(smallestNumber(N)); } } // This code is contributed by Code_Mech |
Javascript
<script> // Javascript program for the above approach // Function to find the smallest // N-digit number divisible by N function smallestNumber(N) { // Return the smallest N-digit // number calculated using above // formula return N * Math.ceil(Math.pow(10, (N - 1)) / N); } // Given N let N = 2; // Function Call document.write(smallestNumber(N)); // This code is contributed by divyesh072019. </script> |
10
Time Complexity: O(log(N))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!