Given an array arr[] of size N and an integer K, the task is to right rotate the array K times.
Examples:
Input: arr[] = {1, 3, 5, 7, 9}, K = 2
Output: 7 9 1 3 5
Explanation: After 1st rotation – {9, 1, 3, 5, 7}
After 2nd rotation – {7, 9, 1, 3, 5}Input: {1, 2, 3, 4, 5, 6}, K = 2
Output: 5 6 1 2 3 4
Approach: The naive approach and approach based on reversing parts of the array is discussed here.
Pointer based approach: The base of this concept is the reversal algorithm for array rotation. The array is divided into two parts where the first part is of size (N-K) and the end part is of size K. These two parts are individually reversed. Then the whole array is reversed.
Below is the implementation of the above approach:
C++
// C++ code to implement above approach #include <iostream> using namespace std; // Function to print the array void print( int arr[], int N) { for ( int i = 0; i < N; i++) cout << *(arr + i) << " " ; } // Function to reverse the array // from start to end index void reverse( int arr[], int start, int end) { int temp; int size = end - start; // Reversal based on pointer approach for ( int i = 0; i < (size / 2); i++) { temp = *(arr + i + start); *(arr + i + start) = *(arr + start + size - i - 1); *(arr + start + size - i - 1) = temp; } } // Function to right rotate the array K times void right( int arr[], int K, int N) { reverse(arr, 0, N - K); reverse(arr, N - K, N); reverse(arr, 0, N); print(arr, N); } // Driver code int main() { int arr[] = { 1, 2, 3, 4, 5, 6 }; int N = sizeof (arr) / sizeof (arr[0]); int K = 2; right(arr, K, N); return 0; } |
Java
// Java code to implement above approach import java.util.*; class GFG{ // Function to print the array static void print( int arr[], int N) { for ( int i = 0 ; i < N; i++) System.out.print(arr[i]+ " " ); } // Function to reverse the array // from start to end index static int [] reverse( int arr[], int start, int end) { int temp; int size = end - start; // Reversal based on pointer approach for ( int i = 0 ; i < (size / 2 ); i++) { temp = arr[ i + start]; arr[i + start] = arr[start + size - i - 1 ]; arr[start + size - i - 1 ] = temp; } return arr; } // Function to right rotate the array K times static void right( int arr[], int K, int N) { arr = reverse(arr, 0 , N - K); arr = reverse(arr, N - K, N); arr = reverse(arr, 0 , N); print(arr, N); } // Driver code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 }; int N = arr.length; int K = 2 ; right(arr, K, N); } } // This code is contributed by 29AjayKumar |
Python3
# Python code to implement above approach # Function to print array def print1(arr, N): for i in range (N): print (arr[i], end = " " ); # Function to reverse the array # from start to end index def reverse(arr, start, end): temp = 0 ; size = end - start; # Reversal based on pointer approach for i in range (size / / 2 ): temp = arr[i + start]; arr[i + start] = arr[start + size - i - 1 ]; arr[start + size - i - 1 ] = temp; return arr; # Function to right rotate the array K times def right(arr, K, N): arr = reverse(arr, 0 , N - K); arr = reverse(arr, N - K, N); arr = reverse(arr, 0 , N); print1(arr, N); # Driver code if __name__ = = '__main__' : arr = [ 1 , 2 , 3 , 4 , 5 , 6 ]; N = len (arr); K = 2 ; right(arr, K, N); # This code is contributed by 29AjayKumar |
C#
// C# code to implement above approach using System; class GFG { // Function to print the array static void print( int [] arr, int N) { for ( int i = 0; i < N; i++) Console.Write(arr[i] + " " ); } // Function to reverse the array // from start to end index static void reverse( int [] arr, int start, int end) { int temp; int size = end - start; // Reversal based on pointer approach for ( int i = 0; i < (size / 2); i++) { temp = arr[i + start]; arr[i + start] = arr[start + size - i - 1]; arr[start + size - i - 1] = temp; } } // Function to right rotate the array K times static void right( int [] arr, int K, int N) { reverse(arr, 0, N - K); reverse(arr, N - K, N); reverse(arr, 0, N); print(arr, N); } // Driver code public static void Main() { int [] arr = { 1, 2, 3, 4, 5, 6 }; int N = arr.Length; int K = 2; right(arr, K, N); } } // This code is contributed by ukasp. |
Javascript
<script> // JavaScript code to implement above approach // Function to print the array const print = (arr, N) => { for (let i = 0; i < N; i++) document.write(`${arr[i]} `); } // Function to reverse the array // from start to end index const reverse = (arr, start, end) => { let temp; let size = end - start; // Reversal based on pointer approach for (let i = 0; i < parseInt(size / 2); i++) { temp = arr[i + start]; arr[i + start] = arr[start + size - i - 1]; arr[start + size - i - 1] = temp; } } // Function to right rotate the array K times const right = (arr, K, N) => { reverse(arr, 0, N - K); reverse(arr, N - K, N); reverse(arr, 0, N); print(arr, N); } // Driver code let arr = [1, 2, 3, 4, 5, 6]; let N = arr.length; let K = 2; right(arr, K, N); // This code is contributed by rakeshsahni </script> |
5 6 1 2 3 4
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!