Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIRearrange array to make Bitwise XOR of similar indexed elements of two...

Rearrange array to make Bitwise XOR of similar indexed elements of two arrays is same

Given two arrays A[] and B[] consisting of N integers (N is odd), the task is to rearrange array B[] such that for each 1 ? i ? N, Bitwise XOR of A[i] and B[i] is the same. If no such rearrangement is possible, print “-1”. Otherwise, print the rearrangement.

Examples:

Input: A[] = {1, 2, 3, 4, 5}, B[] = {5, 4, 3, 2, 1}
Output: {1, 2, 3, 4, 5}
Explanation:
Rearranging the array B[] to {1, 2, 3, 4, 5}, Bitwise XOR between every corresponding pair of array elements is same i.e., 0.

Input: A[] = {14, 21, 33, 49, 53}, B[] = {54, 50, 34, 22, 14}
Output: -1

Naive Approach: The simplest approach is to generate all possible arrangements of array B[] and print that combinations of the array whose Bitwise XOR with corresponding elements is the same. 

Time Complexity: O(N!)
Auxiliary Space: O(1)

Efficient Approach: The idea is to use the commutative property of Bitwise XOR. Below are the steps:

  • Find the Bitwise XOR of both the array elements let the value be xor_value.
  • Store the frequency of element of the array B[] in a map M.
  • For rearranging the array elements of B[] traverse the array B[] and do the following:
    • Update the current element of this array as A[i]^xor_value.
    • If the frequency of the updated current element is greater than 1 then decrement it.
    • Otherwise, there is no such possible arrangement, break out of the loop, and print “-1”.
  • After the above steps are completed, print the array B[] as it contains the rearranged array.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to rearrange the array
// B[] such that A[i] ^ B[i] is same
// for each element
vector<int> rearrangeArray(
    vector<int>& A, vector<int>& B, int N)
{
    // Store frequency of elements
    map<int, int> m;
 
    // Stores xor value
    int xor_value = 0;
 
    for (int i = 0; i < N; i++) {
 
        // Taking xor of all the
        // values of both arrays
        xor_value ^= A[i];
        xor_value ^= B[i];
 
        // Store frequency of B[]
        m[B[i]]++;
    }
 
    for (int i = 0; i < N; i++) {
 
        // Find the array B[] after
        // rearrangement
        B[i] = A[i] ^ xor_value;
 
        // If the updated value is
        // present then decrement
        // its frequency
        if (m[B[i]]) {
            m[B[i]]--;
        }
 
        // Otherwise return empty vector
        else
            return vector<int>{};
    }
 
    return B;
}
 
// Utility function to rearrange the
// array B[] such that A[i] ^ B[i]
// is same for each element
void rearrangeArrayUtil(
    vector<int>& A, vector<int>& B, int N)
{
    // Store rearranged array B
    vector<int> ans
        = rearrangeArray(A, B, N);
 
    // If rearrangement possible
    if (ans.size()) {
        for (auto x : ans) {
            cout << x << " ";
        }
    }
 
    // Otherwise return -1
    else {
        cout << "-1";
    }
}
 
// Driver Code
int main()
{
    // Given vector A
    vector<int> A = { 13, 21, 33, 49, 53 };
 
    // Given vector B
    vector<int> B = { 54, 50, 34, 22, 14 };
 
    // Size of the vector
    int N = (int)A.size();
 
    // Function Call
    rearrangeArrayUtil(A, B, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to rearrange the array
// B[] such that A[i] ^ B[i] is same
// for each element
static ArrayList<Integer> rearrangeArray(
       ArrayList<Integer> A,
       ArrayList<Integer> B, int N)
{
     
    // Store frequency of elements
    HashMap<Integer,
            Integer> m = new HashMap<Integer,
                                     Integer>();
 
    // Stores xor value
    int xor_value = 0;
 
    for(int i = 0; i < N; i++)
    {
         
        // Taking xor of all the
        // values of both arrays
        xor_value ^= A.get(i);
        xor_value ^= B.get(i);
 
        // Store frequency of B[]
        m.put(B.get(i),
              m.getOrDefault(B.get(i) + 1, 0));
    }
 
    for(int i = 0; i < N; i++)
    {
         
        // Find the array B[] after
        // rearrangement
        B.set(i, A.get(i) ^ xor_value);
 
        // If the updated value is
        // present then decrement
        // its frequency
        if (m.getOrDefault(B.get(i), -1) != -1)
        {
            m.put(B.get(i),
                  m.getOrDefault(B.get(i), 0) - 1);
        }
 
        // Otherwise return empty vector
        else
            return (new ArrayList<Integer>());
    }
    return B;
}
 
// Utility function to rearrange the
// array B[] such that A[i] ^ B[i]
// is same for each element
static void rearrangeArrayUtil(ArrayList<Integer> A,
                               ArrayList<Integer> B, int N)
{
     
    // Store rearranged array B
    ArrayList<Integer> ans = rearrangeArray(A, B, N);
 
    // If rearrangement possible
    if (ans.size() != 0)
    {
        for(int i = 0; i < ans.size(); i++)
        {
            System.out.print(ans.get(i) + " ");
        }
    }
 
    // Otherwise return -1
    else
    {
        System.out.println("-1");
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given vector A
    ArrayList<Integer> A = new ArrayList<Integer>(
        Arrays.asList(13, 21, 33, 49, 53));
 
    // Given vector B
    ArrayList<Integer> B = new ArrayList<Integer>(
        Arrays.asList(54, 50, 34, 22, 14));
 
    // Size of the vector
    int N = (int)A.size();
 
    // Function Call
    rearrangeArrayUtil(A, B, N);
}
}
 
// This code is contributed by akhilsaini


Python3




# Python3 program for the above approach
 
# Function to rearrange the array
# B[] such that A[i] ^ B[i] is same
# for each element
def rearrangeArray(A, B, N):
   
  # Store frequency of elements
  m = {}
 
  # Stores xor value
  xor_value = 0
 
  for i in range(0, N):
     
    # Taking xor of all the
    # values of both arrays
    xor_value ^= A[i]
    xor_value ^= B[i]
 
    # Store frequency of B[]
    if B[i] in m:
      m[B[i]] = m[B[i]] + 1
    else:
      m[B[i]] = 1
     
  for i in range(0, N):
     
    # Find the array B[] after
    # rearrangement
    B[i] = A[i] ^ xor_value
 
    # If the updated value is
    # present then decrement
    # its frequency
    if B[i] in m:
      m[B[i]] = m[B[i]] - 1
       
    # Otherwise return empty vector
    else:
      X = []
      return X
 
  return B
 
# Utility function to rearrange the
# array B[] such that A[i] ^ B[i]
# is same for each element
def rearrangeArrayUtil(A, B, N):
   
  # Store rearranged array B
  ans = rearrangeArray(A, B, N)
   
  # If rearrangement possible
  if (len(ans) > 0):
     for x in ans:
        print(x, end = ' ')
         
  # Otherwise return -1
  else:
    print("-1")
     
# Driver Code
if __name__ == '__main__':
   
  # Given vector A
  A = [ 13, 21, 33, 49, 53 ]
 
  # Given vector B
  B = [ 54, 50, 34, 22, 14 ]
 
  # Size of the vector
  N = len(A)
 
  # Function Call
  rearrangeArrayUtil(A, B, N)
   
# This code is contributed by akhilsaini


C#




// C# program for the above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG{
 
// Function to rearrange the array
// B[] such that A[i] ^ B[i] is same
// for each element
static ArrayList rearrangeArray(ArrayList A,
                                ArrayList B, int N)
{
     
    // Store frequency of elements
    Dictionary<int,
               int> m = new Dictionary<int,
                                       int>();
 
    // Stores xor value
    int xor_value = 0;
 
    for(int i = 0; i < N; i++)
    {
         
        // Taking xor of all the
        // values of both arrays
        xor_value ^= (int)A[i];
        xor_value ^= (int)B[i];
 
        // Store frequency of B[]
        if (!m.ContainsKey((int)B[i]))
            m.Add((int)B[i], 1);
        else
            m[(int)B[i]] = m[(int)B[i]] + 1;
    }
 
    for(int i = 0; i < N; i++)
    {
         
        // Find the array B[] after
        // rearrangement
        B[i] = (int)A[i] ^ xor_value;
 
        // If the updated value is
        // present then decrement
        // its frequency
        if (m.ContainsKey((int)B[i]))
        {
            m[(int)B[i]]--;
        }
 
        // Otherwise return empty vector
        else
            return (new ArrayList());
    }
    return B;
}
 
// Utility function to rearrange the
// array B[] such that A[i] ^ B[i]
// is same for each element
static void rearrangeArrayUtil(ArrayList A,
                               ArrayList B,
                               int N)
{
     
    // Store rearranged array B
    ArrayList ans = rearrangeArray(A, B, N);
 
    // If rearrangement possible
    if (ans.Count != 0)
    {
        for(int i = 0; i < ans.Count; i++)
        {
            Console.Write(ans[i] + " ");
        }
    }
     
    // Otherwise return -1
    else
    {
        Console.WriteLine("-1");
    }
}
 
// Driver Code
public static void Main()
{
     
    // Given vector A
    ArrayList A = new ArrayList{ 13, 21, 33, 49, 53 };
 
    // Given vector B
    ArrayList B = new ArrayList{ 54, 50, 34, 22, 14 };
 
    // Size of the vector
    int N = A.Count;
 
    // Function Call
    rearrangeArrayUtil(A, B, N);
}
}
 
// This code is contributed by akhilsaini


Javascript




<script>
// Javascript program for the above approach
 
// Function to rearrange the array
// B[] such that A[i] ^ B[i] is same
// for each element
function rearrangeArray(A, B, N)
{
 
    // Store frequency of elements
    let m = new Map();
 
    // Stores xor value
    let xor_value = 0;
 
    for (let i = 0; i < N; i++) {
 
        // Taking xor of all the
        // values of both arrays
        xor_value ^= A[i];
        xor_value ^= B[i];
 
        // Store frequency of B[]
        if (m.has(B[i])) {
            m.set(B[i], m.get(B[i]) + 1)
        } else {
            m.set(B[i], 1)
        }
    }
 
    for (let i = 0; i < N; i++) {
 
        // Find the array B[] after
        // rearrangement
        B[i] = A[i] ^ xor_value;
 
        // If the updated value is
        // present then decrement
        // its frequency
        if (m.has(B[i])) {
            m.set(B[i], m.get(B[i]) - 1)
        }
 
        // Otherwise return empty vector
        else
            return [];
    }
 
    return B;
}
 
// Utility function to rearrange the
// array B[] such that A[i] ^ B[i]
// is same for each element
function rearrangeArrayUtil(A, B, N)
{
 
    // Store rearranged array B
    let ans = rearrangeArray(A, B, N);
 
    // If rearrangement possible
    if (ans.length > 0) {
        for (let x of ans) {
            document.write(x + " ");
        }
    }
 
    // Otherwise return -1
    else {
        document.write("-1");
    }
}
 
// Driver Code
 
// Given vector A
let A = [13, 21, 33, 49, 53];
 
// Given vector B
let B = [54, 50, 34, 22, 14];
 
// Size of the vector
let N = A.length;
 
// Function Call
rearrangeArrayUtil(A, B, N);
 
// This code is contributed by _saurabh_jaiswal.
</script>


Output: 

14 22 34 50 54

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments